{"title":"存在非高斯水声噪声时的时间反转预编码","authors":"Sharbari Banerjee, M. Agrawal","doi":"10.1109/SYMPOL.2015.7581179","DOIUrl":null,"url":null,"abstract":"Time Reversal (TR) precoding is well-established for mitigating the effects of multipath in an underwater acoustic (UWA) link. However, it has traditionally been studied with additive white Gaussian noise (AWGN) receivers, and, has been found to be optimal for SNR maximization of correlation receiver. Recent research has presented several scenarios where conventional AWGN assumption does not hold in UWA channel; rather, channel noise is better described by heavy-tailed non-Gaussian stochastic processes. This motivates an interest to study the optimality of TR precoding in the presence of non-Gaussian noise as well. In this paper, we use three very popular non-Gaussian statistics, Generalized Gaussian (GG). Gaussian mixture (GM), and Cauchy-Gaussian mixture (CGM), to approximate UWA noise and evaluate the performance of a traditional TR precoder based communication system in different underwater channel conditions.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time reversal precoding in the presence of non-gaussian underwater acoustic noise\",\"authors\":\"Sharbari Banerjee, M. Agrawal\",\"doi\":\"10.1109/SYMPOL.2015.7581179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time Reversal (TR) precoding is well-established for mitigating the effects of multipath in an underwater acoustic (UWA) link. However, it has traditionally been studied with additive white Gaussian noise (AWGN) receivers, and, has been found to be optimal for SNR maximization of correlation receiver. Recent research has presented several scenarios where conventional AWGN assumption does not hold in UWA channel; rather, channel noise is better described by heavy-tailed non-Gaussian stochastic processes. This motivates an interest to study the optimality of TR precoding in the presence of non-Gaussian noise as well. In this paper, we use three very popular non-Gaussian statistics, Generalized Gaussian (GG). Gaussian mixture (GM), and Cauchy-Gaussian mixture (CGM), to approximate UWA noise and evaluate the performance of a traditional TR precoder based communication system in different underwater channel conditions.\",\"PeriodicalId\":127848,\"journal\":{\"name\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYMPOL.2015.7581179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time reversal precoding in the presence of non-gaussian underwater acoustic noise
Time Reversal (TR) precoding is well-established for mitigating the effects of multipath in an underwater acoustic (UWA) link. However, it has traditionally been studied with additive white Gaussian noise (AWGN) receivers, and, has been found to be optimal for SNR maximization of correlation receiver. Recent research has presented several scenarios where conventional AWGN assumption does not hold in UWA channel; rather, channel noise is better described by heavy-tailed non-Gaussian stochastic processes. This motivates an interest to study the optimality of TR precoding in the presence of non-Gaussian noise as well. In this paper, we use three very popular non-Gaussian statistics, Generalized Gaussian (GG). Gaussian mixture (GM), and Cauchy-Gaussian mixture (CGM), to approximate UWA noise and evaluate the performance of a traditional TR precoder based communication system in different underwater channel conditions.