基于机器学习的icg辅助近红外光谱数据诊断胰腺癌

Orna Mukhopadhyay
{"title":"基于机器学习的icg辅助近红外光谱数据诊断胰腺癌","authors":"Orna Mukhopadhyay","doi":"10.1364/ntm.2023.ntu1c.7","DOIUrl":null,"url":null,"abstract":"Near-infrared imaging (NIR) combined with machine learning can provide a high-throughput procedure for detecting tumors with high sensitivity and specificity, We present an end-to-end machine learning-based framework for fast, accurate diagnosis of pancreatic carcinoma.","PeriodicalId":111173,"journal":{"name":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-based Analysis of ICG-Assisted NIR Spectral Data for Diagnosing Pancreatic Carcinoma\",\"authors\":\"Orna Mukhopadhyay\",\"doi\":\"10.1364/ntm.2023.ntu1c.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-infrared imaging (NIR) combined with machine learning can provide a high-throughput procedure for detecting tumors with high sensitivity and specificity, We present an end-to-end machine learning-based framework for fast, accurate diagnosis of pancreatic carcinoma.\",\"PeriodicalId\":111173,\"journal\":{\"name\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ntm.2023.ntu1c.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ntm.2023.ntu1c.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近红外成像(NIR)结合机器学习可以提供一种高通量的方法来检测肿瘤,具有高灵敏度和特异性。我们提出了一个基于端到端机器学习的框架,用于快速、准确地诊断胰腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning-based Analysis of ICG-Assisted NIR Spectral Data for Diagnosing Pancreatic Carcinoma
Near-infrared imaging (NIR) combined with machine learning can provide a high-throughput procedure for detecting tumors with high sensitivity and specificity, We present an end-to-end machine learning-based framework for fast, accurate diagnosis of pancreatic carcinoma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Broadband diffuse reflectance spectroscopy system with a self-calibrating fiber-optic probe Rydberg Atoms In the Vicinity of an Optical Nanofiber Detection of Circulating Tumor Cells and Clusters Using a 2-Fluorophore Diffuse in Vivo Flow Cytometer Third Harmonic Generation Textural Analysis of Alzheimer’s Disease Brain Tissues Evaluating the imaging and therapeutic performance of a dual function antibody conjugate in head and neck cancer spheroids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1