脑电图数据的多种混合压缩技术

M. Adel, M. El-Naggar, M. Darweesh, H. Mostafa
{"title":"脑电图数据的多种混合压缩技术","authors":"M. Adel, M. El-Naggar, M. Darweesh, H. Mostafa","doi":"10.1109/ICM.2018.8704006","DOIUrl":null,"url":null,"abstract":"The large data size of Electroencephalography (EEG) is a result of long-time recording, the large number of electrodes, and a high sampling rate together. Therefore, the required bandwidth and the storage space are larger for efficient data transmission and storing. So, for higher efficiency transmission with less bandwidth and storage space, EEG data compression is a very important issue. This paper introduces two efficient algorithms for EEG compression. In the first algorithm, the EEG data is transformed through Discrete Wavelet Transform (DWT). Then it passes through Set Partitioning in Hierarchical Trees (SPIHT) compression algorithm. While in the second algorithm the data is segmented into N segments and these segments are transformed using Discrete Cosine Transform (DCT) then encoded using Uniform Quantized Huffman (UQH) scheme. Finally, the Lempel Ziv Welch (LZW) is used as a second lossless encoding algorithm for making a heavy compression. The system performance is evaluated in terms of the total time for compression and reconstruction, compression ratio, and root mean square error. The proposed hybrid technique DCT/UQH/LZW achieves 95% compression compared to 59% by DCT/RLE with the same similarity. Furthermore, it reduces 50% less root mean square error.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple Hybrid Compression Techniques for Electroencephalography Data\",\"authors\":\"M. Adel, M. El-Naggar, M. Darweesh, H. Mostafa\",\"doi\":\"10.1109/ICM.2018.8704006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large data size of Electroencephalography (EEG) is a result of long-time recording, the large number of electrodes, and a high sampling rate together. Therefore, the required bandwidth and the storage space are larger for efficient data transmission and storing. So, for higher efficiency transmission with less bandwidth and storage space, EEG data compression is a very important issue. This paper introduces two efficient algorithms for EEG compression. In the first algorithm, the EEG data is transformed through Discrete Wavelet Transform (DWT). Then it passes through Set Partitioning in Hierarchical Trees (SPIHT) compression algorithm. While in the second algorithm the data is segmented into N segments and these segments are transformed using Discrete Cosine Transform (DCT) then encoded using Uniform Quantized Huffman (UQH) scheme. Finally, the Lempel Ziv Welch (LZW) is used as a second lossless encoding algorithm for making a heavy compression. The system performance is evaluated in terms of the total time for compression and reconstruction, compression ratio, and root mean square error. The proposed hybrid technique DCT/UQH/LZW achieves 95% compression compared to 59% by DCT/RLE with the same similarity. Furthermore, it reduces 50% less root mean square error.\",\"PeriodicalId\":305356,\"journal\":{\"name\":\"2018 30th International Conference on Microelectronics (ICM)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2018.8704006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑电图数据量大是记录时间长、电极数量多、采样率高的结果。因此,为了实现高效的数据传输和存储,对带宽和存储空间的要求更高。因此,为了在更小的带宽和存储空间下实现更高的传输效率,脑电数据压缩是一个非常重要的问题。介绍了两种有效的脑电信号压缩算法。第一种算法通过离散小波变换(DWT)对脑电数据进行变换。然后通过分层树集合划分(SPIHT)压缩算法。而在第二种算法中,数据被分割成N段,这些段使用离散余弦变换(DCT)进行变换,然后使用均匀量化霍夫曼(UQH)方案进行编码。最后,使用Lempel Ziv Welch (LZW)作为第二种无损编码算法进行重压缩。系统性能是根据压缩和重构的总时间、压缩比和均方根误差来评估的。在相似度相同的情况下,DCT/UQH/LZW的压缩率为95%,而DCT/RLE的压缩率为59%。此外,它减少了50%的均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Hybrid Compression Techniques for Electroencephalography Data
The large data size of Electroencephalography (EEG) is a result of long-time recording, the large number of electrodes, and a high sampling rate together. Therefore, the required bandwidth and the storage space are larger for efficient data transmission and storing. So, for higher efficiency transmission with less bandwidth and storage space, EEG data compression is a very important issue. This paper introduces two efficient algorithms for EEG compression. In the first algorithm, the EEG data is transformed through Discrete Wavelet Transform (DWT). Then it passes through Set Partitioning in Hierarchical Trees (SPIHT) compression algorithm. While in the second algorithm the data is segmented into N segments and these segments are transformed using Discrete Cosine Transform (DCT) then encoded using Uniform Quantized Huffman (UQH) scheme. Finally, the Lempel Ziv Welch (LZW) is used as a second lossless encoding algorithm for making a heavy compression. The system performance is evaluated in terms of the total time for compression and reconstruction, compression ratio, and root mean square error. The proposed hybrid technique DCT/UQH/LZW achieves 95% compression compared to 59% by DCT/RLE with the same similarity. Furthermore, it reduces 50% less root mean square error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Deep Neural Networks Using FPGA On-body Investigation of Textile Antenna for Wearable RFID Applications Multi-Bit RRAM Transient Modelling and Analysis DEMO: Multi-Grain Adaptivity in Cyber-Physical Systems Compartive study of MPPT methods for PV systems : Case of Moroccan house
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1