基于人脸识别的弱分类器虹膜融合

Di Miao, Man Zhang, Haiqing Li, Zhenan Sun, T. Tan
{"title":"基于人脸识别的弱分类器虹膜融合","authors":"Di Miao, Man Zhang, Haiqing Li, Zhenan Sun, T. Tan","doi":"10.1109/BTAS.2015.7358749","DOIUrl":null,"url":null,"abstract":"Both high accuracy of iris biometrics and friendly interface of face recognition are important issues to a biometric recognition system. So an open problem is how to combine iris and face biometrics for reliable personal identification. This paper proposes a bin-based weak classifier fusion method for Multibiometrics of Iris and Face. The matching scores of iris and face image patches are partitioned into multiple bins so that the weak classifiers are learned on the bins. Such a non-linear score mapping is simple and efficient but it can discover detailed and distinctive information hidden in matching scores. So that pattern classification performance of the matching scores can be significantly improved. In addition, an ensemble learning method based on boosting is used to select the most discriminant and robust bin-based weak classifiers for identity verification. The excellent performance on the CASIA-Iris-Distance demonstrates the advantages of the proposed method over other multibiometric fusion methods.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bin-based weak classifier fusion of iris and face biometrics\",\"authors\":\"Di Miao, Man Zhang, Haiqing Li, Zhenan Sun, T. Tan\",\"doi\":\"10.1109/BTAS.2015.7358749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both high accuracy of iris biometrics and friendly interface of face recognition are important issues to a biometric recognition system. So an open problem is how to combine iris and face biometrics for reliable personal identification. This paper proposes a bin-based weak classifier fusion method for Multibiometrics of Iris and Face. The matching scores of iris and face image patches are partitioned into multiple bins so that the weak classifiers are learned on the bins. Such a non-linear score mapping is simple and efficient but it can discover detailed and distinctive information hidden in matching scores. So that pattern classification performance of the matching scores can be significantly improved. In addition, an ensemble learning method based on boosting is used to select the most discriminant and robust bin-based weak classifiers for identity verification. The excellent performance on the CASIA-Iris-Distance demonstrates the advantages of the proposed method over other multibiometric fusion methods.\",\"PeriodicalId\":404972,\"journal\":{\"name\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2015.7358749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

虹膜生物识别的高精度和人脸识别的友好界面是生物识别系统的重要组成部分。因此,一个悬而未决的问题是如何结合虹膜和面部生物识别技术来进行可靠的个人识别。提出了一种基于样本的弱分类器融合虹膜和人脸多生物特征的方法。将虹膜和人脸图像贴片的匹配分数划分为多个bin,在这些bin上学习弱分类器。这种非线性的分数映射虽然简单有效,但可以发现隐藏在匹配分数中的详细而独特的信息。从而显著提高匹配分数的模式分类性能。此外,采用基于增强的集成学习方法选择最具判别性和鲁棒性的基于bin的弱分类器进行身份验证。在CASIA-Iris-Distance上的优异性能证明了该方法相对于其他多生物特征融合方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bin-based weak classifier fusion of iris and face biometrics
Both high accuracy of iris biometrics and friendly interface of face recognition are important issues to a biometric recognition system. So an open problem is how to combine iris and face biometrics for reliable personal identification. This paper proposes a bin-based weak classifier fusion method for Multibiometrics of Iris and Face. The matching scores of iris and face image patches are partitioned into multiple bins so that the weak classifiers are learned on the bins. Such a non-linear score mapping is simple and efficient but it can discover detailed and distinctive information hidden in matching scores. So that pattern classification performance of the matching scores can be significantly improved. In addition, an ensemble learning method based on boosting is used to select the most discriminant and robust bin-based weak classifiers for identity verification. The excellent performance on the CASIA-Iris-Distance demonstrates the advantages of the proposed method over other multibiometric fusion methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach Combining 3D and 2D for less constrained periocular recognition Pace independent mobile gait biometrics Iris imaging in visible spectrum using white LED On smartphone camera based fingerphoto authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1