{"title":"基于近似计算的高效节能的实时多媒体应用系统","authors":"Wagner Penny, D. Palomino, M. Porto, B. Zatt","doi":"10.5753/CTD.2021.15750","DOIUrl":null,"url":null,"abstract":"This work presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). Two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. Furthermore, a set of schedulability analysis is also proposed in order to guarantee the meeting of timing constraints at typical workload scenarios.","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications using Approximate Computing\",\"authors\":\"Wagner Penny, D. Palomino, M. Porto, B. Zatt\",\"doi\":\"10.5753/CTD.2021.15750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). Two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. Furthermore, a set of schedulability analysis is also proposed in order to guarantee the meeting of timing constraints at typical workload scenarios.\",\"PeriodicalId\":236085,\"journal\":{\"name\":\"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/CTD.2021.15750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/CTD.2021.15750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications using Approximate Computing
This work presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). Two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. Furthermore, a set of schedulability analysis is also proposed in order to guarantee the meeting of timing constraints at typical workload scenarios.