自动驾驶汽车无碰撞概率行人运动预测研究

Kunming Li, Mao Shan, Stuart Eiffert, Stewart Worrall, E. Nebot
{"title":"自动驾驶汽车无碰撞概率行人运动预测研究","authors":"Kunming Li, Mao Shan, Stuart Eiffert, Stewart Worrall, E. Nebot","doi":"10.1109/iv51971.2022.9827397","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion as well as understand human behaviour. However, most existing methods predict pedestrian future motion without considering potential collisions within the crowd. Furthermore, most current predictive models are tested on datasets that assume full observability of the crowd by relying on a top-down view, which does not reflect the real-world use case of autonomous vehicles due to the inherent limitations of on-board sensors such as visual occlusion. Inspired by prior works, we propose a pedestrian motion prediction model trained via contrastive learning, improving prediction accuracy as well as forecasting collision-free trajectories. Additionally, we propose a method for implementing a predictor using a multi-pedestrian probabilistic tracker, which fuses multiple on-board sensors to track pedestrians in 3D space. Through comprehensive experiments on both aerial view and driving datasets collected in a real-world urban environment, we show that our proposed method improves on state of art methods with better prediction accuracy and more socially acceptable prediction trajectories.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Collision-Free Probabilistic Pedestrian Motion Prediction for Autonomous Vehicles\",\"authors\":\"Kunming Li, Mao Shan, Stuart Eiffert, Stewart Worrall, E. Nebot\",\"doi\":\"10.1109/iv51971.2022.9827397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion as well as understand human behaviour. However, most existing methods predict pedestrian future motion without considering potential collisions within the crowd. Furthermore, most current predictive models are tested on datasets that assume full observability of the crowd by relying on a top-down view, which does not reflect the real-world use case of autonomous vehicles due to the inherent limitations of on-board sensors such as visual occlusion. Inspired by prior works, we propose a pedestrian motion prediction model trained via contrastive learning, improving prediction accuracy as well as forecasting collision-free trajectories. Additionally, we propose a method for implementing a predictor using a multi-pedestrian probabilistic tracker, which fuses multiple on-board sensors to track pedestrians in 3D space. Through comprehensive experiments on both aerial view and driving datasets collected in a real-world urban environment, we show that our proposed method improves on state of art methods with better prediction accuracy and more socially acceptable prediction trajectories.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共享行人环境中的自动驾驶汽车导航需要预测未来人群运动以及理解人类行为的能力。然而,大多数现有的方法预测行人未来的运动,而不考虑人群中潜在的碰撞。此外,目前大多数预测模型都是在数据集上进行测试的,这些数据集通过依赖于自上而下的视图来假设人群的完全可观察性,由于车载传感器(如视觉遮挡)的固有限制,这并不能反映自动驾驶汽车的真实用例。受前人工作的启发,我们提出了一种通过对比学习训练的行人运动预测模型,提高了预测精度,并预测了无碰撞轨迹。此外,我们提出了一种使用多行人概率跟踪器实现预测器的方法,该方法融合了多个车载传感器来跟踪3D空间中的行人。通过在真实城市环境中收集的鸟瞰图和驾驶数据集的综合实验,我们表明我们提出的方法改进了最先进的方法,具有更好的预测精度和更多社会可接受的预测轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Collision-Free Probabilistic Pedestrian Motion Prediction for Autonomous Vehicles
Autonomous vehicle navigation in shared pedestrian environments requires the ability to predict future crowd motion as well as understand human behaviour. However, most existing methods predict pedestrian future motion without considering potential collisions within the crowd. Furthermore, most current predictive models are tested on datasets that assume full observability of the crowd by relying on a top-down view, which does not reflect the real-world use case of autonomous vehicles due to the inherent limitations of on-board sensors such as visual occlusion. Inspired by prior works, we propose a pedestrian motion prediction model trained via contrastive learning, improving prediction accuracy as well as forecasting collision-free trajectories. Additionally, we propose a method for implementing a predictor using a multi-pedestrian probabilistic tracker, which fuses multiple on-board sensors to track pedestrians in 3D space. Through comprehensive experiments on both aerial view and driving datasets collected in a real-world urban environment, we show that our proposed method improves on state of art methods with better prediction accuracy and more socially acceptable prediction trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1