Kevin Martin, P. Miaja, D. G. Lamar, J. Sebastián, S. Álvarez
{"title":"在具有功率因数校正的电源的情况下,在待机模式下实现低功耗","authors":"Kevin Martin, P. Miaja, D. G. Lamar, J. Sebastián, S. Álvarez","doi":"10.1109/APEC.2017.7930610","DOIUrl":null,"url":null,"abstract":"This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines a standby consumption higher than 0.5 W if the power supply has to be designed to operate in the Universal Range of line voltages. This fact makes it very difficult to comply with European Ecodesign Regulations. To overcome this problem, several solutions are proposed and analyzed in this paper, the most promising being implemented in a real SMPS prototype.","PeriodicalId":201289,"journal":{"name":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementing low power consumption in standby mode in the case of power supplies with power factor correction\",\"authors\":\"Kevin Martin, P. Miaja, D. G. Lamar, J. Sebastián, S. Álvarez\",\"doi\":\"10.1109/APEC.2017.7930610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines a standby consumption higher than 0.5 W if the power supply has to be designed to operate in the Universal Range of line voltages. This fact makes it very difficult to comply with European Ecodesign Regulations. To overcome this problem, several solutions are proposed and analyzed in this paper, the most promising being implemented in a real SMPS prototype.\",\"PeriodicalId\":201289,\"journal\":{\"name\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2017.7930610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2017.7930610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementing low power consumption in standby mode in the case of power supplies with power factor correction
This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines a standby consumption higher than 0.5 W if the power supply has to be designed to operate in the Universal Range of line voltages. This fact makes it very difficult to comply with European Ecodesign Regulations. To overcome this problem, several solutions are proposed and analyzed in this paper, the most promising being implemented in a real SMPS prototype.