{"title":"飞机推进系统机翼磁流体动力装置","authors":"P. Miča, J. Čerňan","doi":"10.26552/pas.z.2021.2.27","DOIUrl":null,"url":null,"abstract":"Magnetohydrodynamics is one of the relatively new fields of physics studying the dynamics of magnetic fields in electrically conductive fluids. The implementation using magnetohydrodynamic principles applied to aircraft propulsion systems is so far only in a range of experiments. So far, real applications have occurred only a few times and always only at the level of experiments and prototypes. In my paper, I deal with the application of a magnetohydrodynamic device built into the wing of an airplane. This means should work as a secondary type of drive in cooperation with the primary drive, which is represented by a turbofan motor. The device´s main function is to reduce the fuel requirements of the primary drive and reduce noise and other harmful emissions. The work also includes drawings created in the program AutoCAD, where I designed the location and implementation of a wing magnetohydrodynamic device in the wing of general construction. In this work, I also explore the advantages and disadvantages of using different tips of the primary drive. I am also researching the current state of the problem where I am analyzing the Japanese project of the YAMATO-1 semi-catamaran with magnetohydronymous propulsion and a prototype of an ion-powered crawler from IMT scientists. I also examine in detail all the theoretical knowledge concerning magnetohydrodynamics and wing design. Finally, I compare the advantages and disadvantages of using this tool as well as other technical issues related to construction. This work can serve as a basis for further future research into the application of magnetohydrodynamic principles in aviation","PeriodicalId":142690,"journal":{"name":"Práce a štúdie - Vydanie 10","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wing magnetohydrodynamic facility of aircraft propulsion system\",\"authors\":\"P. Miča, J. Čerňan\",\"doi\":\"10.26552/pas.z.2021.2.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetohydrodynamics is one of the relatively new fields of physics studying the dynamics of magnetic fields in electrically conductive fluids. The implementation using magnetohydrodynamic principles applied to aircraft propulsion systems is so far only in a range of experiments. So far, real applications have occurred only a few times and always only at the level of experiments and prototypes. In my paper, I deal with the application of a magnetohydrodynamic device built into the wing of an airplane. This means should work as a secondary type of drive in cooperation with the primary drive, which is represented by a turbofan motor. The device´s main function is to reduce the fuel requirements of the primary drive and reduce noise and other harmful emissions. The work also includes drawings created in the program AutoCAD, where I designed the location and implementation of a wing magnetohydrodynamic device in the wing of general construction. In this work, I also explore the advantages and disadvantages of using different tips of the primary drive. I am also researching the current state of the problem where I am analyzing the Japanese project of the YAMATO-1 semi-catamaran with magnetohydronymous propulsion and a prototype of an ion-powered crawler from IMT scientists. I also examine in detail all the theoretical knowledge concerning magnetohydrodynamics and wing design. Finally, I compare the advantages and disadvantages of using this tool as well as other technical issues related to construction. This work can serve as a basis for further future research into the application of magnetohydrodynamic principles in aviation\",\"PeriodicalId\":142690,\"journal\":{\"name\":\"Práce a štúdie - Vydanie 10\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Práce a štúdie - Vydanie 10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26552/pas.z.2021.2.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Práce a štúdie - Vydanie 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26552/pas.z.2021.2.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wing magnetohydrodynamic facility of aircraft propulsion system
Magnetohydrodynamics is one of the relatively new fields of physics studying the dynamics of magnetic fields in electrically conductive fluids. The implementation using magnetohydrodynamic principles applied to aircraft propulsion systems is so far only in a range of experiments. So far, real applications have occurred only a few times and always only at the level of experiments and prototypes. In my paper, I deal with the application of a magnetohydrodynamic device built into the wing of an airplane. This means should work as a secondary type of drive in cooperation with the primary drive, which is represented by a turbofan motor. The device´s main function is to reduce the fuel requirements of the primary drive and reduce noise and other harmful emissions. The work also includes drawings created in the program AutoCAD, where I designed the location and implementation of a wing magnetohydrodynamic device in the wing of general construction. In this work, I also explore the advantages and disadvantages of using different tips of the primary drive. I am also researching the current state of the problem where I am analyzing the Japanese project of the YAMATO-1 semi-catamaran with magnetohydronymous propulsion and a prototype of an ion-powered crawler from IMT scientists. I also examine in detail all the theoretical knowledge concerning magnetohydrodynamics and wing design. Finally, I compare the advantages and disadvantages of using this tool as well as other technical issues related to construction. This work can serve as a basis for further future research into the application of magnetohydrodynamic principles in aviation