{"title":"利用神经网络的链路权值检测机器人搜索运动的运动约束","authors":"H. Seki, K. Sasaki, M. Takano","doi":"10.1109/IROS.1995.525931","DOIUrl":null,"url":null,"abstract":"In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by \"active search motion\" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of kinematic constraint from search motion of a robot using link weights of a neural network\",\"authors\":\"H. Seki, K. Sasaki, M. Takano\",\"doi\":\"10.1109/IROS.1995.525931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by \\\"active search motion\\\" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of kinematic constraint from search motion of a robot using link weights of a neural network
In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by "active search motion" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.