M. Salehi, Mohammad Khavari Tavana, Semeen Rehman, F. Kriebel, M. Shafique, A. Ejlali, J. Henkel
{"title":"DRVS:通过动态冗余和电压缩放实现的高能效可靠性管理","authors":"M. Salehi, Mohammad Khavari Tavana, Semeen Rehman, F. Kriebel, M. Shafique, A. Ejlali, J. Henkel","doi":"10.1109/ISLPED.2015.7273518","DOIUrl":null,"url":null,"abstract":"Many-core processors facilitate coarse-grained reliability by exploiting available cores for redundant multithreading. However, ensuring high reliability with reduced power consumption necessitates joint considerations of variations in vulnerability, performance and power properties of software as well as the underlying hardware. In this paper, we propose a power-efficient reliability management system for many-core processors. It exploits various basic redundancy techniques (like, dual and triple modular redundancy) operating in different voltage-frequency levels, each offering distinct reliability, performance and power properties. Our system performs Dynamic Redundancy and Voltage Scaling (DRVS) considering process variations in hardware, and diversities in software vulnerability and execution time properties. Experiments show that DRVS system provides significant reliability improvements while providing up to 60% reduced power consumption compared to state-of-the-art techniques.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations\",\"authors\":\"M. Salehi, Mohammad Khavari Tavana, Semeen Rehman, F. Kriebel, M. Shafique, A. Ejlali, J. Henkel\",\"doi\":\"10.1109/ISLPED.2015.7273518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-core processors facilitate coarse-grained reliability by exploiting available cores for redundant multithreading. However, ensuring high reliability with reduced power consumption necessitates joint considerations of variations in vulnerability, performance and power properties of software as well as the underlying hardware. In this paper, we propose a power-efficient reliability management system for many-core processors. It exploits various basic redundancy techniques (like, dual and triple modular redundancy) operating in different voltage-frequency levels, each offering distinct reliability, performance and power properties. Our system performs Dynamic Redundancy and Voltage Scaling (DRVS) considering process variations in hardware, and diversities in software vulnerability and execution time properties. Experiments show that DRVS system provides significant reliability improvements while providing up to 60% reduced power consumption compared to state-of-the-art techniques.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations
Many-core processors facilitate coarse-grained reliability by exploiting available cores for redundant multithreading. However, ensuring high reliability with reduced power consumption necessitates joint considerations of variations in vulnerability, performance and power properties of software as well as the underlying hardware. In this paper, we propose a power-efficient reliability management system for many-core processors. It exploits various basic redundancy techniques (like, dual and triple modular redundancy) operating in different voltage-frequency levels, each offering distinct reliability, performance and power properties. Our system performs Dynamic Redundancy and Voltage Scaling (DRVS) considering process variations in hardware, and diversities in software vulnerability and execution time properties. Experiments show that DRVS system provides significant reliability improvements while providing up to 60% reduced power consumption compared to state-of-the-art techniques.