材料分类的偏振激光雷达特征选择

Jarrod P. Brown, Christian L. Saludez, Darrell Card, Rodney G. Roberts
{"title":"材料分类的偏振激光雷达特征选择","authors":"Jarrod P. Brown, Christian L. Saludez, Darrell Card, Rodney G. Roberts","doi":"10.1109/RAPID49481.2020.9195711","DOIUrl":null,"url":null,"abstract":"Feature selection for polarimetric lidar material classification is explored. Experimental measurements of a diverse sample set are collected and common features emphasizing polarimetric and polarization-insensitive reflectance are calculated. Multiple classifiers are implemented. Results suggest two transmit and two return polarization states maximize classification performance.","PeriodicalId":220244,"journal":{"name":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polarimetric Lidar Feature Selection for Material Classification\",\"authors\":\"Jarrod P. Brown, Christian L. Saludez, Darrell Card, Rodney G. Roberts\",\"doi\":\"10.1109/RAPID49481.2020.9195711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection for polarimetric lidar material classification is explored. Experimental measurements of a diverse sample set are collected and common features emphasizing polarimetric and polarization-insensitive reflectance are calculated. Multiple classifiers are implemented. Results suggest two transmit and two return polarization states maximize classification performance.\",\"PeriodicalId\":220244,\"journal\":{\"name\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAPID49481.2020.9195711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID49481.2020.9195711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

探讨了偏振激光雷达材料分类的特征选择。收集了不同样品集的实验测量数据,并计算了强调偏振和偏振不敏感反射率的共同特征。实现了多个分类器。结果表明,两种发射和两种返回极化状态最大限度地提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polarimetric Lidar Feature Selection for Material Classification
Feature selection for polarimetric lidar material classification is explored. Experimental measurements of a diverse sample set are collected and common features emphasizing polarimetric and polarization-insensitive reflectance are calculated. Multiple classifiers are implemented. Results suggest two transmit and two return polarization states maximize classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Dual-Frequency Coherent Noise Ladar Universal Biosensor for Multiple Biomarker Detection for Medical Applications Non-Electrical Topside (NET) Optical Fiber helps Mitigate Boundary Interactions AI Powered THz Testing Technology for Ensuring Hardware Cybersecurity Far-Field Thermal Emission from Optical Antennas on an Epsilon-Near-Zero Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1