基于主成分分析的文本分类特征提取

Safae Lhazmir, Ismail El Moudden, A. Kobbane
{"title":"基于主成分分析的文本分类特征提取","authors":"Safae Lhazmir, Ismail El Moudden, A. Kobbane","doi":"10.23919/PEMWN.2017.8308030","DOIUrl":null,"url":null,"abstract":"Over the past 20 years, data has increased in a large scale in various fields. Internet of Things (IoT), for instance, comprises billions of devices and the data streams coming from these devices challenge the traditional approaches to data management and contribute to the emerging paradigm of big data. To be able to handle such data adequately, it is necessary to reduce their dimensionality to a size more compatible with the resolution methods, even if this reduction can lead to a slight loss of information. The aim of this paper is to study the potential of dimensionality reduction in text categorization of a publicly available dataset CNAE-9.","PeriodicalId":383978,"journal":{"name":"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Feature extraction based on principal component analysis for text categorization\",\"authors\":\"Safae Lhazmir, Ismail El Moudden, A. Kobbane\",\"doi\":\"10.23919/PEMWN.2017.8308030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past 20 years, data has increased in a large scale in various fields. Internet of Things (IoT), for instance, comprises billions of devices and the data streams coming from these devices challenge the traditional approaches to data management and contribute to the emerging paradigm of big data. To be able to handle such data adequately, it is necessary to reduce their dimensionality to a size more compatible with the resolution methods, even if this reduction can lead to a slight loss of information. The aim of this paper is to study the potential of dimensionality reduction in text categorization of a publicly available dataset CNAE-9.\",\"PeriodicalId\":383978,\"journal\":{\"name\":\"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/PEMWN.2017.8308030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PEMWN.2017.8308030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在过去的20年里,各个领域的数据都在大规模地增加。例如,物联网(IoT)由数十亿台设备组成,来自这些设备的数据流挑战了传统的数据管理方法,并促成了新兴的大数据范式。为了能够充分地处理这些数据,有必要将它们的维数降低到与分辨率方法更兼容的大小,即使这种降低可能导致信息的轻微丢失。本文的目的是研究公共数据集CNAE-9文本分类中降维的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction based on principal component analysis for text categorization
Over the past 20 years, data has increased in a large scale in various fields. Internet of Things (IoT), for instance, comprises billions of devices and the data streams coming from these devices challenge the traditional approaches to data management and contribute to the emerging paradigm of big data. To be able to handle such data adequately, it is necessary to reduce their dimensionality to a size more compatible with the resolution methods, even if this reduction can lead to a slight loss of information. The aim of this paper is to study the potential of dimensionality reduction in text categorization of a publicly available dataset CNAE-9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobility support enhancement for RPL Evaluating the gain of directional antennas in linear VANETs using stochastic geometry On the QoS routing with RPL Implementation and validation of an Omnet++ optical burst switching simulator Positioning system for emergency situation based on RSSI measurements for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1