BraceAssertion:网络物理系统的运行时验证

Xi Zheng, C. Julien, R. Podorozhny, F. Cassez
{"title":"BraceAssertion:网络物理系统的运行时验证","authors":"Xi Zheng, C. Julien, R. Podorozhny, F. Cassez","doi":"10.1109/MASS.2015.15","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPS) have gained wide popularity, however, developing and debugging CPS remain significant challenges. Many bugs are detectable only at runtime under deployment conditions that may be unpredictable or at least unexpected at development time. The current state of the practice of debugging CPS is generally ad hoc, involving trial and error in a real deployment. For increased rigor, it is appealing to bring formal methods to CPS verification. However developers often eschew formal approaches due to complexity and lack of efficiency. This paper presents Brace Assertion, a specification framework based on natural language queries that are automatically converted to a determinitic class of timed automata used for runtime monitoring. To reduce runtime overhead and support properties that reference predicate logic, we use a second monitor automaton to create filtered traces on which to run the analysis using the specification monitor. We evaluate the Brace Assertion framework using a real CPS case study and show that the framework is able to minimize runtime overhead with an increasing number of monitors.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"BraceAssertion: Runtime Verification of Cyber-Physical Systems\",\"authors\":\"Xi Zheng, C. Julien, R. Podorozhny, F. Cassez\",\"doi\":\"10.1109/MASS.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPS) have gained wide popularity, however, developing and debugging CPS remain significant challenges. Many bugs are detectable only at runtime under deployment conditions that may be unpredictable or at least unexpected at development time. The current state of the practice of debugging CPS is generally ad hoc, involving trial and error in a real deployment. For increased rigor, it is appealing to bring formal methods to CPS verification. However developers often eschew formal approaches due to complexity and lack of efficiency. This paper presents Brace Assertion, a specification framework based on natural language queries that are automatically converted to a determinitic class of timed automata used for runtime monitoring. To reduce runtime overhead and support properties that reference predicate logic, we use a second monitor automaton to create filtered traces on which to run the analysis using the specification monitor. We evaluate the Brace Assertion framework using a real CPS case study and show that the framework is able to minimize runtime overhead with an increasing number of monitors.\",\"PeriodicalId\":436496,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

信息物理系统(CPS)已经获得了广泛的普及,然而,开发和调试CPS仍然是重大的挑战。许多错误只能在运行时在部署条件下检测到,而部署条件可能是不可预测的,或者至少在开发时是不可预测的。调试CPS的实践的当前状态通常是临时的,涉及在实际部署中的试验和错误。为了提高严谨性,它呼吁将正式的方法引入CPS验证。然而,由于复杂性和缺乏效率,开发人员经常避开正式的方法。本文提出了大括号断言,这是一个基于自然语言查询的规范框架,可自动转换为用于运行时监控的确定类时间自动机。为了减少运行时开销并支持引用谓词逻辑的属性,我们使用第二个监控器自动机来创建过滤的跟踪,以便使用规范监控器在其上运行分析。我们使用一个真实的CPS案例研究来评估大括号断言框架,并表明该框架能够在监视器数量不断增加的情况下最小化运行时开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BraceAssertion: Runtime Verification of Cyber-Physical Systems
Cyber-Physical Systems (CPS) have gained wide popularity, however, developing and debugging CPS remain significant challenges. Many bugs are detectable only at runtime under deployment conditions that may be unpredictable or at least unexpected at development time. The current state of the practice of debugging CPS is generally ad hoc, involving trial and error in a real deployment. For increased rigor, it is appealing to bring formal methods to CPS verification. However developers often eschew formal approaches due to complexity and lack of efficiency. This paper presents Brace Assertion, a specification framework based on natural language queries that are automatically converted to a determinitic class of timed automata used for runtime monitoring. To reduce runtime overhead and support properties that reference predicate logic, we use a second monitor automaton to create filtered traces on which to run the analysis using the specification monitor. We evaluate the Brace Assertion framework using a real CPS case study and show that the framework is able to minimize runtime overhead with an increasing number of monitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Provisioning for High Energy Efficiency and Resource Utilization in Cloud RANs An Energy Efficient and Restricted Tour Construction for Mobile Sink in Wireless Sensor Networks MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage Context-Aware Crowd-Sensing in Opportunistic Mobile Social Networks Study of Hadoop-MapReduce on Google N-Gram Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1