{"title":"认知超宽带雷达的机器人控制","authors":"S. Brüggenwirth, F. Rial","doi":"10.1109/IRC.2018.00063","DOIUrl":null,"url":null,"abstract":"In the article, we describe a trajectory planning problem for a 6-DOF robotic manipulator arm that carries an ultra-wideband (UWB) radar sensor with synthetic aperture (SAR). The resolution depends on the trajectory and velocity profile of the sensor head. The constraints can be modelled as an optimization problem to obtain a feasible, collision-free target trajectory of the end-effector of the manipulator arm in Cartesian coordinates that minimizes observation time. For 3D-reconstruction, the target is observed in multiple height slices. For Through-the-Wall radar the sensor can be operated in sliding mode for scanning larger areas. For IED inspection the spotlight mode is preferred, constantly pointing the antennas towards the target to obtain maximum azimuth resolution.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robotic Control for Cognitive UWB Radar\",\"authors\":\"S. Brüggenwirth, F. Rial\",\"doi\":\"10.1109/IRC.2018.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, we describe a trajectory planning problem for a 6-DOF robotic manipulator arm that carries an ultra-wideband (UWB) radar sensor with synthetic aperture (SAR). The resolution depends on the trajectory and velocity profile of the sensor head. The constraints can be modelled as an optimization problem to obtain a feasible, collision-free target trajectory of the end-effector of the manipulator arm in Cartesian coordinates that minimizes observation time. For 3D-reconstruction, the target is observed in multiple height slices. For Through-the-Wall radar the sensor can be operated in sliding mode for scanning larger areas. For IED inspection the spotlight mode is preferred, constantly pointing the antennas towards the target to obtain maximum azimuth resolution.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the article, we describe a trajectory planning problem for a 6-DOF robotic manipulator arm that carries an ultra-wideband (UWB) radar sensor with synthetic aperture (SAR). The resolution depends on the trajectory and velocity profile of the sensor head. The constraints can be modelled as an optimization problem to obtain a feasible, collision-free target trajectory of the end-effector of the manipulator arm in Cartesian coordinates that minimizes observation time. For 3D-reconstruction, the target is observed in multiple height slices. For Through-the-Wall radar the sensor can be operated in sliding mode for scanning larger areas. For IED inspection the spotlight mode is preferred, constantly pointing the antennas towards the target to obtain maximum azimuth resolution.