变刚度模块化关节的缆索驱动机械臂设计与分析

Jianyin Tang, Hong Tao, Xinhan Zhuang, Yang Cheng, Hang Xiao, Kun Xu, Xilun Ding
{"title":"变刚度模块化关节的缆索驱动机械臂设计与分析","authors":"Jianyin Tang, Hong Tao, Xinhan Zhuang, Yang Cheng, Hang Xiao, Kun Xu, Xilun Ding","doi":"10.1109/ROBIO55434.2022.10012009","DOIUrl":null,"url":null,"abstract":"This paper describes a robotic arm that allows for safe human-robot interaction. The robotic arm is essentially a cable-driven robotic arm with passive variable stiffness features; the cable-driven section of the arm maintains high stiffness and strength by utilizing a unique lightweight tension amplification system. The stiffness of the joints, which is intimately related to the performance of motion control, is quadratically amplified. We propose a 1-DOF and 3-DOF joint mechanism using the tension amplification method, which we combine to construct the robotic arm's elbow and wrist. Modular joints with variable stiffness are used in the 3-DOF shoulder. The passive compliant parts of the variable stiffness modular joint with progressive stiffness could make the actuator inherently soft at low contact torque levels and significantly stiffer at higher interaction torque levels, resolving common design trade-offs in linear series elastic actuators. To assess the workspace of the robotic arm, a kinematic model of the 7-DOF robotic arm is built. Finally, a cable-driven robotic arm prototype with variable stiffness joint module is developed.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of cable-driven robotic arm with variable stiffness modular joint\",\"authors\":\"Jianyin Tang, Hong Tao, Xinhan Zhuang, Yang Cheng, Hang Xiao, Kun Xu, Xilun Ding\",\"doi\":\"10.1109/ROBIO55434.2022.10012009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a robotic arm that allows for safe human-robot interaction. The robotic arm is essentially a cable-driven robotic arm with passive variable stiffness features; the cable-driven section of the arm maintains high stiffness and strength by utilizing a unique lightweight tension amplification system. The stiffness of the joints, which is intimately related to the performance of motion control, is quadratically amplified. We propose a 1-DOF and 3-DOF joint mechanism using the tension amplification method, which we combine to construct the robotic arm's elbow and wrist. Modular joints with variable stiffness are used in the 3-DOF shoulder. The passive compliant parts of the variable stiffness modular joint with progressive stiffness could make the actuator inherently soft at low contact torque levels and significantly stiffer at higher interaction torque levels, resolving common design trade-offs in linear series elastic actuators. To assess the workspace of the robotic arm, a kinematic model of the 7-DOF robotic arm is built. Finally, a cable-driven robotic arm prototype with variable stiffness joint module is developed.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10012009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10012009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种允许安全人机交互的机械臂。机械臂本质上是一种具有被动变刚度特征的缆索驱动机械臂;通过使用独特的轻质张力放大系统,臂的电缆驱动部分保持高刚度和强度。与运动控制性能密切相关的关节刚度被二次放大。提出了一种基于张力放大法的1自由度和3自由度关节机构,并将其结合起来构成机械手臂的肘部和腕部。三自由度肩关节采用可变刚度模块化关节。渐进式变刚度模块化关节的被动柔性部件可以使执行器在低接触扭矩水平下固有柔软,在高交互扭矩水平下显着变硬,解决了线性串联弹性执行器的常见设计折衷问题。为了评估机械臂的工作空间,建立了七自由度机械臂的运动学模型。最后,研制了带变刚度关节模块的缆索驱动机械臂样机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and analysis of cable-driven robotic arm with variable stiffness modular joint
This paper describes a robotic arm that allows for safe human-robot interaction. The robotic arm is essentially a cable-driven robotic arm with passive variable stiffness features; the cable-driven section of the arm maintains high stiffness and strength by utilizing a unique lightweight tension amplification system. The stiffness of the joints, which is intimately related to the performance of motion control, is quadratically amplified. We propose a 1-DOF and 3-DOF joint mechanism using the tension amplification method, which we combine to construct the robotic arm's elbow and wrist. Modular joints with variable stiffness are used in the 3-DOF shoulder. The passive compliant parts of the variable stiffness modular joint with progressive stiffness could make the actuator inherently soft at low contact torque levels and significantly stiffer at higher interaction torque levels, resolving common design trade-offs in linear series elastic actuators. To assess the workspace of the robotic arm, a kinematic model of the 7-DOF robotic arm is built. Finally, a cable-driven robotic arm prototype with variable stiffness joint module is developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relative Displacement Measurement Based Affine Formation Tracking Control for Nonholonomic Kinematic Agents Steady Tracker: Tracking a Target Stably Using a Quadrotor Adaptive Super-Twisting sliding mode trajectory tracking control of underactuated unmanned surface vehicles based on prescribed performance* Design and Preliminary Evaluation of a Lightweight, Cable-Driven Hip Exoskeleton for Walking Assistance A PSO-based Resource Allocation and Task Assignment Approach for Real-Time Cloud Computing-based Robotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1