从故障树中构建二叉决策图的排序启发式方法

Marc Bouissou
{"title":"从故障树中构建二叉决策图的排序启发式方法","authors":"Marc Bouissou","doi":"10.1109/RAMS.1996.500664","DOIUrl":null,"url":null,"abstract":"Binary decision diagrams (BDD) have made a noticeable entry in the RAMS field. This kind of representation for Boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cutsets search) and quantitatively (exact calculation top event probability). Any Boolean function, and in particular any fault-tree, whether coherent or not, can be represented by a BDD. The BDD is a canonical representation of the function, as soon as one has chosen a variable (i.e., in the fault-tree case, basic event) ordering. Tools based on the use of BDDs, like METAPRIME, or ARALIA, can in some cases give more accurate results than conventional tools, while running 1000 times faster. EDF has investigated this kind of technology, and tested METAPRIME, ARALIA, and other tools based on BDDs, in the framework of cooperations with the BULL company and with the Bordeaux University. These tests have demonstrated that the size of the BDD, that has to be built thoroughly before any kind of assessment can begin, is dramatically sensitive to the ordering chosen for the variables. For a given fault-tree, this size may vary by several orders of magnitude. This can lead to excessive needs, both in terms of memory and CPU time. The problem of finding an optimal ordering being untractable for real applications, many heuristics have been proposed, in order to find acceptable orderings, at low cost (in terms of computing requirements).","PeriodicalId":393833,"journal":{"name":"Proceedings of 1996 Annual Reliability and Maintainability Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"An ordering heuristic for building binary decision diagrams from fault-trees\",\"authors\":\"Marc Bouissou\",\"doi\":\"10.1109/RAMS.1996.500664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary decision diagrams (BDD) have made a noticeable entry in the RAMS field. This kind of representation for Boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cutsets search) and quantitatively (exact calculation top event probability). Any Boolean function, and in particular any fault-tree, whether coherent or not, can be represented by a BDD. The BDD is a canonical representation of the function, as soon as one has chosen a variable (i.e., in the fault-tree case, basic event) ordering. Tools based on the use of BDDs, like METAPRIME, or ARALIA, can in some cases give more accurate results than conventional tools, while running 1000 times faster. EDF has investigated this kind of technology, and tested METAPRIME, ARALIA, and other tools based on BDDs, in the framework of cooperations with the BULL company and with the Bordeaux University. These tests have demonstrated that the size of the BDD, that has to be built thoroughly before any kind of assessment can begin, is dramatically sensitive to the ordering chosen for the variables. For a given fault-tree, this size may vary by several orders of magnitude. This can lead to excessive needs, both in terms of memory and CPU time. The problem of finding an optimal ordering being untractable for real applications, many heuristics have been proposed, in order to find acceptable orderings, at low cost (in terms of computing requirements).\",\"PeriodicalId\":393833,\"journal\":{\"name\":\"Proceedings of 1996 Annual Reliability and Maintainability Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1996 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.1996.500664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.1996.500664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

二进制决策图(BDD)在RAMS领域取得了引人注目的进展。布尔函数的这种表示使得对复杂故障树进行定性(最小割集搜索)和定量(精确计算最高事件概率)的评估成为可能。任何布尔函数,特别是任何故障树,无论是否一致,都可以用BDD表示。一旦选择了变量(例如,在故障树的情况下是基本事件)排序,BDD就是函数的规范表示。基于bdd使用的工具,如METAPRIME或ARALIA,在某些情况下可以提供比传统工具更准确的结果,同时运行速度快1000倍。在与BULL公司和波尔多大学的合作框架下,EDF已经研究了这种技术,并测试了METAPRIME、ARALIA和其他基于bdd的工具。这些测试已经证明,在开始任何类型的评估之前必须彻底构建的BDD的大小对为变量选择的顺序非常敏感。对于给定的故障树,这个大小可能会变化几个数量级。这可能导致对内存和CPU时间的过度需求。寻找最优排序的问题在实际应用中是难以处理的,为了以低成本(就计算需求而言)找到可接受的排序,已经提出了许多启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ordering heuristic for building binary decision diagrams from fault-trees
Binary decision diagrams (BDD) have made a noticeable entry in the RAMS field. This kind of representation for Boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cutsets search) and quantitatively (exact calculation top event probability). Any Boolean function, and in particular any fault-tree, whether coherent or not, can be represented by a BDD. The BDD is a canonical representation of the function, as soon as one has chosen a variable (i.e., in the fault-tree case, basic event) ordering. Tools based on the use of BDDs, like METAPRIME, or ARALIA, can in some cases give more accurate results than conventional tools, while running 1000 times faster. EDF has investigated this kind of technology, and tested METAPRIME, ARALIA, and other tools based on BDDs, in the framework of cooperations with the BULL company and with the Bordeaux University. These tests have demonstrated that the size of the BDD, that has to be built thoroughly before any kind of assessment can begin, is dramatically sensitive to the ordering chosen for the variables. For a given fault-tree, this size may vary by several orders of magnitude. This can lead to excessive needs, both in terms of memory and CPU time. The problem of finding an optimal ordering being untractable for real applications, many heuristics have been proposed, in order to find acceptable orderings, at low cost (in terms of computing requirements).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a fault isolation procedure [space station reliability] The reliability of error correcting code implementations [IC reliability assessment] Commercial-off-the shelf (COTS): a challenge to military equipment reliability A combined analysis approach to assessing requirements for safety critical real-time control systems Fault tree analysis and binary decision diagrams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1