数据挖掘中最优结果的模拟退火三层叠加泛化结构

K. Kasthuriarachchi, S. Liyanage
{"title":"数据挖掘中最优结果的模拟退火三层叠加泛化结构","authors":"K. Kasthuriarachchi, S. Liyanage","doi":"10.4018/ijaiml.20210701.oa10","DOIUrl":null,"url":null,"abstract":"The combination of different machine learning models to a single prediction model usually improves the performance of the data analysis. Stacking ensembles are one of such approaches to build a high performance classifier that can be applied to various contexts of data mining. This study proposes an enhanced stacking ensemble by collating a few machine learning algorithms with two layered meta classifications to address the limitations of existing stacking architecture to utilize Simulated Annealing Algorithm to optimize the classifier configuration in order to reach the best prediction accuracy. The proposed method significantly outperformed three general stacking ensembles of two layers that have been executed using the meta classifiers utilized in the proposed architecture. These assessments have been statistically proven at a 95% confidence level. The novel stacking ensemble has also outperformed the existing ensembles named; Adaboost algorithm, Gradient boosting algorithm, XGBoost classifier and bagging classifiers as well.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-Layer Stacked Generalization Architecture With Simulated Annealing for Optimum Results in Data Mining\",\"authors\":\"K. Kasthuriarachchi, S. Liyanage\",\"doi\":\"10.4018/ijaiml.20210701.oa10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of different machine learning models to a single prediction model usually improves the performance of the data analysis. Stacking ensembles are one of such approaches to build a high performance classifier that can be applied to various contexts of data mining. This study proposes an enhanced stacking ensemble by collating a few machine learning algorithms with two layered meta classifications to address the limitations of existing stacking architecture to utilize Simulated Annealing Algorithm to optimize the classifier configuration in order to reach the best prediction accuracy. The proposed method significantly outperformed three general stacking ensembles of two layers that have been executed using the meta classifiers utilized in the proposed architecture. These assessments have been statistically proven at a 95% confidence level. The novel stacking ensemble has also outperformed the existing ensembles named; Adaboost algorithm, Gradient boosting algorithm, XGBoost classifier and bagging classifiers as well.\",\"PeriodicalId\":217541,\"journal\":{\"name\":\"Int. J. Artif. Intell. Mach. Learn.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaiml.20210701.oa10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.20210701.oa10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将不同的机器学习模型组合到一个单一的预测模型通常可以提高数据分析的性能。堆叠集成是构建可应用于各种数据挖掘上下文的高性能分类器的方法之一。本研究通过整理几种具有两层元分类的机器学习算法,提出了一种增强的叠加集成,以解决现有叠加架构的局限性,利用模拟退火算法优化分类器配置,以达到最佳的预测精度。所提出的方法显著优于使用所提出的体系结构中使用的元分类器执行的两层的三种一般堆叠集成。这些评估在统计上得到了95%置信水平的证实。新型叠加集成电路的性能也优于现有的;Adaboost算法,梯度增强算法,XGBoost分类器和bagging分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Layer Stacked Generalization Architecture With Simulated Annealing for Optimum Results in Data Mining
The combination of different machine learning models to a single prediction model usually improves the performance of the data analysis. Stacking ensembles are one of such approaches to build a high performance classifier that can be applied to various contexts of data mining. This study proposes an enhanced stacking ensemble by collating a few machine learning algorithms with two layered meta classifications to address the limitations of existing stacking architecture to utilize Simulated Annealing Algorithm to optimize the classifier configuration in order to reach the best prediction accuracy. The proposed method significantly outperformed three general stacking ensembles of two layers that have been executed using the meta classifiers utilized in the proposed architecture. These assessments have been statistically proven at a 95% confidence level. The novel stacking ensemble has also outperformed the existing ensembles named; Adaboost algorithm, Gradient boosting algorithm, XGBoost classifier and bagging classifiers as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and Communications Technology Survey of Recent Applications of Artificial Intelligence for Detection and Analysis of COVID-19 and Other Infectious Diseases Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization Using Open-Source Software for Business, Urban, and Other Applications of Deep Neural Networks, Machine Learning, and Data Analytics Tools Autonomous Navigation Using Deep Reinforcement Learning in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1