基于注意力的句子级情感分类递归自编码器

Jiayi Sun, Mingbo Zhao
{"title":"基于注意力的句子级情感分类递归自编码器","authors":"Jiayi Sun, Mingbo Zhao","doi":"10.1109/PRMVIA58252.2023.00050","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a crucial task in the research of natural language handling. Traditional machine learning approaches frequently employ bag-of-word representations that do not capture complex linguistic phenomena. The recursive autoencoder (RAE) method can availably learn the vector space representation of phrases, which is superior to other sentiment prediction methods on commonly used data sets. However, during the learning process, extensive label data is often required to label each node. In addition, RAE uses greedy strategies to merge adjacent words, it is difficult to capture long-distance and deeper semantic information. We put forward a semi-supervised approach that combines the SenticNet lexicon to train the recursive autoencoder for calculating the sentiment orientation of each node, and incorporates an attention mechanism to capture the contextual relationship between the words in a sentence. Experiments prove that the model proposed in this paper outperforms RAE and other models.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-Based Recursive Autoencoder For Sentence-Level Sentiment Classification\",\"authors\":\"Jiayi Sun, Mingbo Zhao\",\"doi\":\"10.1109/PRMVIA58252.2023.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is a crucial task in the research of natural language handling. Traditional machine learning approaches frequently employ bag-of-word representations that do not capture complex linguistic phenomena. The recursive autoencoder (RAE) method can availably learn the vector space representation of phrases, which is superior to other sentiment prediction methods on commonly used data sets. However, during the learning process, extensive label data is often required to label each node. In addition, RAE uses greedy strategies to merge adjacent words, it is difficult to capture long-distance and deeper semantic information. We put forward a semi-supervised approach that combines the SenticNet lexicon to train the recursive autoencoder for calculating the sentiment orientation of each node, and incorporates an attention mechanism to capture the contextual relationship between the words in a sentence. Experiments prove that the model proposed in this paper outperforms RAE and other models.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRMVIA58252.2023.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRMVIA58252.2023.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是自然语言处理研究中的一项重要任务。传统的机器学习方法经常使用不能捕捉复杂语言现象的词袋表示。递归自编码器(RAE)方法可以有效地学习短语的向量空间表示,在常用数据集上优于其他情感预测方法。然而,在学习过程中,通常需要大量的标签数据来标记每个节点。此外,RAE使用贪婪策略合并相邻词,难以捕获远距离和更深层次的语义信息。我们提出了一种半监督的方法,结合SenticNet词典来训练递归自编码器来计算每个节点的情感倾向,并结合注意机制来捕捉句子中单词之间的上下文关系。实验证明,本文提出的模型优于RAE等模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention-Based Recursive Autoencoder For Sentence-Level Sentiment Classification
Sentiment analysis is a crucial task in the research of natural language handling. Traditional machine learning approaches frequently employ bag-of-word representations that do not capture complex linguistic phenomena. The recursive autoencoder (RAE) method can availably learn the vector space representation of phrases, which is superior to other sentiment prediction methods on commonly used data sets. However, during the learning process, extensive label data is often required to label each node. In addition, RAE uses greedy strategies to merge adjacent words, it is difficult to capture long-distance and deeper semantic information. We put forward a semi-supervised approach that combines the SenticNet lexicon to train the recursive autoencoder for calculating the sentiment orientation of each node, and incorporates an attention mechanism to capture the contextual relationship between the words in a sentence. Experiments prove that the model proposed in this paper outperforms RAE and other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Surface deformation monitoring based on DINSAR technique Sigma-UAP: An Invisible Semi-Universal Adversarial Attack Against Deep Neural Networks Lightweight defect detection method of punched nickel-plated steel strip based on GhostNet Performance Analysis of CHAID Algorithm for Accuracy Garbage Classification and Detection Based on Improved YOLOv7 Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1