音频广播新闻中的结构化命名实体检索

Azeddine Zidouni, M. Quafafou, H. Glotin
{"title":"音频广播新闻中的结构化命名实体检索","authors":"Azeddine Zidouni, M. Quafafou, H. Glotin","doi":"10.1109/CBMI.2009.41","DOIUrl":null,"url":null,"abstract":"This paper focuses on the role of structures in named entity retrieval inside audio transcription. We consider the transcription documents structures that guide the parsing process, and from which we deduce an optimal hierarchical structure of the space of concepts. Therefore, a concept (named entity) is represented by a node or any sub-path in this hierarchy. We show the interest of such structure in the recognition of the named entities using the Conditional Random Fields (CRFs). The comparison of our approach to the Hidden Markov Model (HMM) method shows an important improvement of recognition using Combining CRFs. We also show the impact of time axis in the prediction process.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structured Named Entity Retrieval in Audio Broadcast News\",\"authors\":\"Azeddine Zidouni, M. Quafafou, H. Glotin\",\"doi\":\"10.1109/CBMI.2009.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the role of structures in named entity retrieval inside audio transcription. We consider the transcription documents structures that guide the parsing process, and from which we deduce an optimal hierarchical structure of the space of concepts. Therefore, a concept (named entity) is represented by a node or any sub-path in this hierarchy. We show the interest of such structure in the recognition of the named entities using the Conditional Random Fields (CRFs). The comparison of our approach to the Hidden Markov Model (HMM) method shows an important improvement of recognition using Combining CRFs. We also show the impact of time axis in the prediction process.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究了结构在音频转录中命名实体检索中的作用。我们考虑引导解析过程的转录文档结构,并从中推断出概念空间的最佳层次结构。因此,概念(命名实体)由该层次结构中的节点或任何子路径表示。我们展示了这种结构对使用条件随机场(CRFs)识别命名实体的兴趣。将该方法与隐马尔可夫模型(HMM)方法进行了比较,结果表明结合CRFs的方法对识别有重要的改进。我们还展示了时间轴在预测过程中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured Named Entity Retrieval in Audio Broadcast News
This paper focuses on the role of structures in named entity retrieval inside audio transcription. We consider the transcription documents structures that guide the parsing process, and from which we deduce an optimal hierarchical structure of the space of concepts. Therefore, a concept (named entity) is represented by a node or any sub-path in this hierarchy. We show the interest of such structure in the recognition of the named entities using the Conditional Random Fields (CRFs). The comparison of our approach to the Hidden Markov Model (HMM) method shows an important improvement of recognition using Combining CRFs. We also show the impact of time axis in the prediction process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1