奥氏体不锈钢在空气和模拟原生水环境中的负R疲劳裂纹扩展速率试验

N. Platts, B. Coult, Wenzhong Zhang, Peter Gill
{"title":"奥氏体不锈钢在空气和模拟原生水环境中的负R疲劳裂纹扩展速率试验","authors":"N. Platts, B. Coult, Wenzhong Zhang, Peter Gill","doi":"10.1115/PVP2018-84252","DOIUrl":null,"url":null,"abstract":"Light water reactor coolant environments are known to significantly enhance the fatigue crack growth rate of austenitic stainless steels. However, most available data in these high temperature pressurized water environments have been derived using specimens tested at positive load ratios, whilst most plant transients involve significant compressive as well as tensile stresses. The extent to which the compressive loading impacts on the environmental enhancement of fatigue crack growth, and, more importantly, on the processes leading to retardation of those enhanced rates is therefore unclear, potentially leading to excessive conservatism in current assessment methodologies.\n A test methodology using corner cracked tensile specimens, and based on finite element analysis of the specimens to generate effective stress intensity factors, Keff, for specimens loaded in fully reverse loading has been previously presented. The current paper further develops this approach, enabling it to be utilized to study a range of positive and negative load ratios from R = −2 to R = 0.5 loading, and provides a greater understanding of the development of stress intensity factor within a loading cycle.\n Test data has been generated in both air and high temperature water environments over a range of loading ratios. Comparison of these data to material specific crack growth data from conventional compact tension specimens and environmental crack growth laws (such as Code Case N-809) enables the impact of crack closure on the effective stress intensity factor to be assessed in both air and water environments. The significance of indicated differences in the apparent level of closure between air and water environments is discussed in the light of accepted growth laws and material specific data.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"156 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Negative R Fatigue Crack Growth Rate Testing on Austenitic Stainless Steel in Air and Simulated Primary Water Environments\",\"authors\":\"N. Platts, B. Coult, Wenzhong Zhang, Peter Gill\",\"doi\":\"10.1115/PVP2018-84252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light water reactor coolant environments are known to significantly enhance the fatigue crack growth rate of austenitic stainless steels. However, most available data in these high temperature pressurized water environments have been derived using specimens tested at positive load ratios, whilst most plant transients involve significant compressive as well as tensile stresses. The extent to which the compressive loading impacts on the environmental enhancement of fatigue crack growth, and, more importantly, on the processes leading to retardation of those enhanced rates is therefore unclear, potentially leading to excessive conservatism in current assessment methodologies.\\n A test methodology using corner cracked tensile specimens, and based on finite element analysis of the specimens to generate effective stress intensity factors, Keff, for specimens loaded in fully reverse loading has been previously presented. The current paper further develops this approach, enabling it to be utilized to study a range of positive and negative load ratios from R = −2 to R = 0.5 loading, and provides a greater understanding of the development of stress intensity factor within a loading cycle.\\n Test data has been generated in both air and high temperature water environments over a range of loading ratios. Comparison of these data to material specific crack growth data from conventional compact tension specimens and environmental crack growth laws (such as Code Case N-809) enables the impact of crack closure on the effective stress intensity factor to be assessed in both air and water environments. The significance of indicated differences in the apparent level of closure between air and water environments is discussed in the light of accepted growth laws and material specific data.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"156 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

轻水反应堆冷却剂环境可以显著提高奥氏体不锈钢的疲劳裂纹扩展速率。然而,在这些高温加压水环境中,大多数可用的数据都是通过在正负载比下测试的样品得出的,而大多数植物瞬态涉及显著的压缩和拉伸应力。因此,压缩载荷对环境下疲劳裂纹扩展增强的影响程度,更重要的是,对导致这些增强速率延迟的过程的影响程度尚不清楚,这可能导致当前评估方法过于保守。先前已经提出了一种测试方法,使用角裂拉伸试样,并基于有限元分析试样,以产生完全反向加载时试样的有效应力强度因子Keff。本文进一步发展了这一方法,使其能够用于研究从R = - 2到R = 0.5载荷范围内的正、负载荷比,并对加载周期内应力强度因子的发展提供了更好的理解。测试数据已经在空气和高温水环境中产生,并且在一定的负载比范围内。将这些数据与来自常规压紧拉伸试样的材料特定裂纹扩展数据和环境裂纹扩展规律(如Code Case N-809)进行比较,可以在空气和水环境中评估裂纹闭合对有效应力强度因子的影响。根据公认的生长规律和材料特定数据,讨论了空气和水环境之间表观封闭水平的指示差异的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Negative R Fatigue Crack Growth Rate Testing on Austenitic Stainless Steel in Air and Simulated Primary Water Environments
Light water reactor coolant environments are known to significantly enhance the fatigue crack growth rate of austenitic stainless steels. However, most available data in these high temperature pressurized water environments have been derived using specimens tested at positive load ratios, whilst most plant transients involve significant compressive as well as tensile stresses. The extent to which the compressive loading impacts on the environmental enhancement of fatigue crack growth, and, more importantly, on the processes leading to retardation of those enhanced rates is therefore unclear, potentially leading to excessive conservatism in current assessment methodologies. A test methodology using corner cracked tensile specimens, and based on finite element analysis of the specimens to generate effective stress intensity factors, Keff, for specimens loaded in fully reverse loading has been previously presented. The current paper further develops this approach, enabling it to be utilized to study a range of positive and negative load ratios from R = −2 to R = 0.5 loading, and provides a greater understanding of the development of stress intensity factor within a loading cycle. Test data has been generated in both air and high temperature water environments over a range of loading ratios. Comparison of these data to material specific crack growth data from conventional compact tension specimens and environmental crack growth laws (such as Code Case N-809) enables the impact of crack closure on the effective stress intensity factor to be assessed in both air and water environments. The significance of indicated differences in the apparent level of closure between air and water environments is discussed in the light of accepted growth laws and material specific data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1