求解最大约束满足问题的神经网络方法

M. Ettaouil, K. Haddouch, Youssef Hami, Loqman Chakir
{"title":"求解最大约束满足问题的神经网络方法","authors":"M. Ettaouil, K. Haddouch, Youssef Hami, Loqman Chakir","doi":"10.1109/SITA.2013.6560794","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach to solve the maximal constraint satisfaction problems (Max-CSP) using the continuous Hopfield network. This approach is divided into two steps: the first step involves modeling the maximal constraint satisfaction problem as 0-1 quadratic programming subject to linear constraints (QP). The second step concerns applying the continuous Hopfield network (CHN) to solve the QP problem. Therefore, the generalized energy function associated to the CHN and an appropriate parameter-setting procedure about Max-CSP problems are given in detail. Finally, the proposed algorithm and some computational experiments solving the Max-CSP are shown.","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural networks approach for solving the Maximal Constraint Satisfaction Problems\",\"authors\":\"M. Ettaouil, K. Haddouch, Youssef Hami, Loqman Chakir\",\"doi\":\"10.1109/SITA.2013.6560794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach to solve the maximal constraint satisfaction problems (Max-CSP) using the continuous Hopfield network. This approach is divided into two steps: the first step involves modeling the maximal constraint satisfaction problem as 0-1 quadratic programming subject to linear constraints (QP). The second step concerns applying the continuous Hopfield network (CHN) to solve the QP problem. Therefore, the generalized energy function associated to the CHN and an appropriate parameter-setting procedure about Max-CSP problems are given in detail. Finally, the proposed algorithm and some computational experiments solving the Max-CSP are shown.\",\"PeriodicalId\":145244,\"journal\":{\"name\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2013.6560794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出一种利用连续Hopfield网络求解最大约束满足问题(Max-CSP)的新方法。该方法分为两步:第一步将最大约束满足问题建模为线性约束下的0-1二次规划(QP)。第二步是应用连续Hopfield网络(CHN)求解QP问题。因此,详细地给出了与CHN相关的广义能量函数和Max-CSP问题的适当的参数设置过程。最后给出了求解Max-CSP问题的算法和一些计算实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks approach for solving the Maximal Constraint Satisfaction Problems
In this paper, we propose a new approach to solve the maximal constraint satisfaction problems (Max-CSP) using the continuous Hopfield network. This approach is divided into two steps: the first step involves modeling the maximal constraint satisfaction problem as 0-1 quadratic programming subject to linear constraints (QP). The second step concerns applying the continuous Hopfield network (CHN) to solve the QP problem. Therefore, the generalized energy function associated to the CHN and an appropriate parameter-setting procedure about Max-CSP problems are given in detail. Finally, the proposed algorithm and some computational experiments solving the Max-CSP are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rule-based simulation approach to scheduling problem in semiconductor photolithography process Hybrid network selection strategy by using M-AHP/E-TOPSIS for heterogeneous networks A semantic approach for automatic image annotation Result merging for meta-search engine Review of Web services description approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1