{"title":"60GHz高增益低噪声放大器,65nm CMOS共门感应反馈","authors":"H. Hsieh, Po-Yi Wu, C. Jou, F. Hsueh, G. Huang","doi":"10.1109/RFIC.2011.5940665","DOIUrl":null,"url":null,"abstract":"In this paper, a novel design technique of common-gate inductive feedback is presented for millimeter-wave low-noise amplifiers (LNAs). For this technique, by adopting a gate inductor at the common-gate transistor of the cascode stage, the gain of the LNA can be enhanced even under a wideband operation. Using a 65nm CMOS process, transmission-line-based and spiral-inductor-based LNAs are fabricated for demonstration. With a dc power consumption of 33.6 mW from a 1.2-V supply voltage, the transmission-line-based LNA exhibits a gain of 20.6 dB and a noise figure of 5.4 dB at 60 GHz while the 3dB bandwidth is 14.1 GHz. As for the spiral-inductor-based LNA, consuming a dc power of 28.8 mW from a 1.2-V supply voltage, the circuit shows a gain of 18.0 dB and a noise figure of 4.5 dB at 60 GHz while the 3dB bandwidth is 12.2 GHz.","PeriodicalId":448165,"journal":{"name":"2011 IEEE Radio Frequency Integrated Circuits Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS\",\"authors\":\"H. Hsieh, Po-Yi Wu, C. Jou, F. Hsueh, G. Huang\",\"doi\":\"10.1109/RFIC.2011.5940665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel design technique of common-gate inductive feedback is presented for millimeter-wave low-noise amplifiers (LNAs). For this technique, by adopting a gate inductor at the common-gate transistor of the cascode stage, the gain of the LNA can be enhanced even under a wideband operation. Using a 65nm CMOS process, transmission-line-based and spiral-inductor-based LNAs are fabricated for demonstration. With a dc power consumption of 33.6 mW from a 1.2-V supply voltage, the transmission-line-based LNA exhibits a gain of 20.6 dB and a noise figure of 5.4 dB at 60 GHz while the 3dB bandwidth is 14.1 GHz. As for the spiral-inductor-based LNA, consuming a dc power of 28.8 mW from a 1.2-V supply voltage, the circuit shows a gain of 18.0 dB and a noise figure of 4.5 dB at 60 GHz while the 3dB bandwidth is 12.2 GHz.\",\"PeriodicalId\":448165,\"journal\":{\"name\":\"2011 IEEE Radio Frequency Integrated Circuits Symposium\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Radio Frequency Integrated Circuits Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2011.5940665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2011.5940665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS
In this paper, a novel design technique of common-gate inductive feedback is presented for millimeter-wave low-noise amplifiers (LNAs). For this technique, by adopting a gate inductor at the common-gate transistor of the cascode stage, the gain of the LNA can be enhanced even under a wideband operation. Using a 65nm CMOS process, transmission-line-based and spiral-inductor-based LNAs are fabricated for demonstration. With a dc power consumption of 33.6 mW from a 1.2-V supply voltage, the transmission-line-based LNA exhibits a gain of 20.6 dB and a noise figure of 5.4 dB at 60 GHz while the 3dB bandwidth is 14.1 GHz. As for the spiral-inductor-based LNA, consuming a dc power of 28.8 mW from a 1.2-V supply voltage, the circuit shows a gain of 18.0 dB and a noise figure of 4.5 dB at 60 GHz while the 3dB bandwidth is 12.2 GHz.