E. A. Deiana, Vincent St-Amour, P. Dinda, N. Hardavellas, Simone Campanoni
{"title":"非确定性应用的非常规并行化","authors":"E. A. Deiana, Vincent St-Amour, P. Dinda, N. Hardavellas, Simone Campanoni","doi":"10.1145/3173162.3173181","DOIUrl":null,"url":null,"abstract":"The demand for thread-level-parallelism (TLP) on commodity processors is endless as it is essential for gaining performance and saving energy. However, TLP in today's programs is limited by dependences that must be satisfied at run time. We have found that for nondeterministic programs, some of these actual dependences can be satisfied with alternative data that can be generated in parallel, thus boosting the program's TLP. Satisfying these dependences with alternative data nonetheless produces final outputs that match those of the original nondeterministic program. To demonstrate the practicality of our technique, we describe the design, implementation, and evaluation of our compilers, autotuner, profiler, and runtime, which are enabled by our proposed C++ programming language extensions. The resulting system boosts the performance of six well-known nondeterministic and multi-threaded benchmarks by 158.2% (geometric mean) on a 28-core Intel-based platform.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Unconventional Parallelization of Nondeterministic Applications\",\"authors\":\"E. A. Deiana, Vincent St-Amour, P. Dinda, N. Hardavellas, Simone Campanoni\",\"doi\":\"10.1145/3173162.3173181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for thread-level-parallelism (TLP) on commodity processors is endless as it is essential for gaining performance and saving energy. However, TLP in today's programs is limited by dependences that must be satisfied at run time. We have found that for nondeterministic programs, some of these actual dependences can be satisfied with alternative data that can be generated in parallel, thus boosting the program's TLP. Satisfying these dependences with alternative data nonetheless produces final outputs that match those of the original nondeterministic program. To demonstrate the practicality of our technique, we describe the design, implementation, and evaluation of our compilers, autotuner, profiler, and runtime, which are enabled by our proposed C++ programming language extensions. The resulting system boosts the performance of six well-known nondeterministic and multi-threaded benchmarks by 158.2% (geometric mean) on a 28-core Intel-based platform.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unconventional Parallelization of Nondeterministic Applications
The demand for thread-level-parallelism (TLP) on commodity processors is endless as it is essential for gaining performance and saving energy. However, TLP in today's programs is limited by dependences that must be satisfied at run time. We have found that for nondeterministic programs, some of these actual dependences can be satisfied with alternative data that can be generated in parallel, thus boosting the program's TLP. Satisfying these dependences with alternative data nonetheless produces final outputs that match those of the original nondeterministic program. To demonstrate the practicality of our technique, we describe the design, implementation, and evaluation of our compilers, autotuner, profiler, and runtime, which are enabled by our proposed C++ programming language extensions. The resulting system boosts the performance of six well-known nondeterministic and multi-threaded benchmarks by 158.2% (geometric mean) on a 28-core Intel-based platform.