化解:一个依赖引导的功能调度器,用于减少FaaS平台上的冷启动

Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, Michael R. Lyu
{"title":"化解:一个依赖引导的功能调度器,用于减少FaaS平台上的冷启动","authors":"Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, Michael R. Lyu","doi":"10.1109/ICDCS51616.2021.00027","DOIUrl":null,"url":null,"abstract":"Function-as-a-Service (FaaS) is becoming a prevalent paradigm in developing cloud applications. With FaaS, clients can develop applications as serverless functions, leaving the burden of resource management to cloud providers. However, FaaS platforms suffer from the performance degradation caused by the cold starts of serverless functions. Cold starts happen when serverless functions are invoked before they have been loaded into the memory. The problem is unavoidable because the memory in datacenters is typically too limited to hold all serverless functions simultaneously. The latency of cold function invocations will greatly degenerate the performance of FaaS platforms. Currently, FaaS platforms employ various scheduling methods to reduce the occurrences of cold starts. However, they do not consider the ubiquitous dependencies between serverless functions. Observing the potential of using dependencies to mitigate cold starts, we propose Defuse, a Dependency-guided Function Scheduler on FaaS platforms. Specifically, Defuse identifies two types of dependencies between serverless functions, i.e., strong dependencies and weak ones. It uses frequent pattern mining and positive point-wise mutual information to mine such dependencies respectively from function invocation histories. In this way, Defuse constructs a function dependency graph. The connected components (i.e., dependent functions) on the graph can be scheduled to diminish the occurrences of cold starts. We evaluate the effectiveness of Defuse by applying it to an industrial serverless dataset. The experimental results show that Defuse can reduce 22% of memory usage while having a 35% decrease in function cold-start rates compared with the state-of-the-art method.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on FaaS Platforms\",\"authors\":\"Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, Michael R. Lyu\",\"doi\":\"10.1109/ICDCS51616.2021.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function-as-a-Service (FaaS) is becoming a prevalent paradigm in developing cloud applications. With FaaS, clients can develop applications as serverless functions, leaving the burden of resource management to cloud providers. However, FaaS platforms suffer from the performance degradation caused by the cold starts of serverless functions. Cold starts happen when serverless functions are invoked before they have been loaded into the memory. The problem is unavoidable because the memory in datacenters is typically too limited to hold all serverless functions simultaneously. The latency of cold function invocations will greatly degenerate the performance of FaaS platforms. Currently, FaaS platforms employ various scheduling methods to reduce the occurrences of cold starts. However, they do not consider the ubiquitous dependencies between serverless functions. Observing the potential of using dependencies to mitigate cold starts, we propose Defuse, a Dependency-guided Function Scheduler on FaaS platforms. Specifically, Defuse identifies two types of dependencies between serverless functions, i.e., strong dependencies and weak ones. It uses frequent pattern mining and positive point-wise mutual information to mine such dependencies respectively from function invocation histories. In this way, Defuse constructs a function dependency graph. The connected components (i.e., dependent functions) on the graph can be scheduled to diminish the occurrences of cold starts. We evaluate the effectiveness of Defuse by applying it to an industrial serverless dataset. The experimental results show that Defuse can reduce 22% of memory usage while having a 35% decrease in function cold-start rates compared with the state-of-the-art method.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

功能即服务(FaaS)正在成为开发云应用程序的流行范例。使用FaaS,客户可以将应用程序开发为无服务器功能,将资源管理的负担留给云提供商。但是,FaaS平台受到无服务器功能冷启动导致的性能下降的影响。冷启动发生在无服务器函数被加载到内存之前被调用的时候。这个问题是不可避免的,因为数据中心的内存通常非常有限,无法同时容纳所有无服务器功能。冷函数调用的延迟将极大地降低FaaS平台的性能。目前,FaaS平台采用各种调度方法来减少冷启动的发生。但是,它们没有考虑无服务器功能之间普遍存在的依赖关系。观察到使用依赖关系来缓解冷启动的潜力,我们提出了化解,一个FaaS平台上的依赖引导的功能调度程序。具体来说,化解识别了无服务器函数之间的两种依赖关系,即强依赖关系和弱依赖关系。它使用频繁的模式挖掘和正向的逐点互信息分别从函数调用历史中挖掘这些依赖关系。通过这种方式,化解构建了一个函数依赖关系图。可以对图上的连接组件(即相关函数)进行调度,以减少冷启动的发生。我们通过将其应用于工业无服务器数据集来评估其有效性。实验结果表明,与最先进的方法相比,该方法可以减少22%的内存使用,同时功能冷启动率降低35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on FaaS Platforms
Function-as-a-Service (FaaS) is becoming a prevalent paradigm in developing cloud applications. With FaaS, clients can develop applications as serverless functions, leaving the burden of resource management to cloud providers. However, FaaS platforms suffer from the performance degradation caused by the cold starts of serverless functions. Cold starts happen when serverless functions are invoked before they have been loaded into the memory. The problem is unavoidable because the memory in datacenters is typically too limited to hold all serverless functions simultaneously. The latency of cold function invocations will greatly degenerate the performance of FaaS platforms. Currently, FaaS platforms employ various scheduling methods to reduce the occurrences of cold starts. However, they do not consider the ubiquitous dependencies between serverless functions. Observing the potential of using dependencies to mitigate cold starts, we propose Defuse, a Dependency-guided Function Scheduler on FaaS platforms. Specifically, Defuse identifies two types of dependencies between serverless functions, i.e., strong dependencies and weak ones. It uses frequent pattern mining and positive point-wise mutual information to mine such dependencies respectively from function invocation histories. In this way, Defuse constructs a function dependency graph. The connected components (i.e., dependent functions) on the graph can be scheduled to diminish the occurrences of cold starts. We evaluate the effectiveness of Defuse by applying it to an industrial serverless dataset. The experimental results show that Defuse can reduce 22% of memory usage while having a 35% decrease in function cold-start rates compared with the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Location Privacy Attacks and Defense on Point-of-interest Aggregates Hand-Key: Leveraging Multiple Hand Biometrics for Attack-Resilient User Authentication Using COTS RFID Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning The Vertical Cuckoo Filters: A Family of Insertion-friendly Sketches for Online Applications Dyconits: Scaling Minecraft-like Services through Dynamically Managed Inconsistency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1