基于frft域自适应滤波算法的微弱信号检测

Jie Xia, Jian-Yun Zhang, Xiaobo Li, Yunxiang Mao
{"title":"基于frft域自适应滤波算法的微弱信号检测","authors":"Jie Xia, Jian-Yun Zhang, Xiaobo Li, Yunxiang Mao","doi":"10.1109/RADAR.2016.8059461","DOIUrl":null,"url":null,"abstract":"Traditional time-domain adaptive filtering has limitation in signal detection and estimation under condition of low SNR. Therefore, a method of weak signal detection based on FRFT-domain adaptive filtering algorithm is presented. The method utilizes excellent features of FRFT(Fractional Fourier Transformation) specific to LFM signals, processes echo signals through adaptive filtering algorithm on FRFT domain and improves detection effects. Simulation results show that the proposed method can detect and estimate echo signals effectively under condition of low SNR and exceeds time-domain adaptive filtering on filtering effects.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weak signal detection based on FRFT-domain adaptive filtering algorithm\",\"authors\":\"Jie Xia, Jian-Yun Zhang, Xiaobo Li, Yunxiang Mao\",\"doi\":\"10.1109/RADAR.2016.8059461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional time-domain adaptive filtering has limitation in signal detection and estimation under condition of low SNR. Therefore, a method of weak signal detection based on FRFT-domain adaptive filtering algorithm is presented. The method utilizes excellent features of FRFT(Fractional Fourier Transformation) specific to LFM signals, processes echo signals through adaptive filtering algorithm on FRFT domain and improves detection effects. Simulation results show that the proposed method can detect and estimate echo signals effectively under condition of low SNR and exceeds time-domain adaptive filtering on filtering effects.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在低信噪比条件下,传统的时域自适应滤波在信号检测和估计方面存在局限性。为此,提出了一种基于frft域自适应滤波算法的微弱信号检测方法。该方法利用分数阶傅里叶变换(FRFT)对LFM信号的优良特性,在FRFT域上采用自适应滤波算法对回波信号进行处理,提高了检测效果。仿真结果表明,该方法能在低信噪比条件下有效检测和估计回波信号,滤波效果优于时域自适应滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak signal detection based on FRFT-domain adaptive filtering algorithm
Traditional time-domain adaptive filtering has limitation in signal detection and estimation under condition of low SNR. Therefore, a method of weak signal detection based on FRFT-domain adaptive filtering algorithm is presented. The method utilizes excellent features of FRFT(Fractional Fourier Transformation) specific to LFM signals, processes echo signals through adaptive filtering algorithm on FRFT domain and improves detection effects. Simulation results show that the proposed method can detect and estimate echo signals effectively under condition of low SNR and exceeds time-domain adaptive filtering on filtering effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1