{"title":"通过神经权重虚拟化快速和可扩展的内存深度多任务学习","authors":"Seulki Lee, S. Nirjon","doi":"10.1145/3386901.3388947","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of Neural Weight Virtualization - which enables fast and scalable in-memory multitask deep learning on memory-constrained embedded systems. The goal of neural weight virtualization is two-fold: (1) packing multiple DNNs into a fixed-sized main memory whose combined memory requirement is larger than the main memory, and (2) enabling fast in-memory execution of the DNNs. To this end, we propose a two-phase approach: (1) virtualization of weight parameters for fine-grained parameter sharing at the level of weights that scales up to multiple heterogeneous DNNs of arbitrary network architectures, and (2) in-memory data structure and run-time execution framework for in-memory execution and context-switching of DNN tasks. We implement two multitask learning systems: (1) an embedded GPU-based mobile robot, and (2) a microcontroller-based IoT device. We thoroughly evaluate the proposed algorithms as well as the two systems that involve ten state-of-the-art DNNs. Our evaluation shows that weight virtualization improves memory efficiency, execution time, and energy efficiency of the multitask learning systems by 4.1x, 36.9x, and 4.2x, respectively.","PeriodicalId":345029,"journal":{"name":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Fast and scalable in-memory deep multitask learning via neural weight virtualization\",\"authors\":\"Seulki Lee, S. Nirjon\",\"doi\":\"10.1145/3386901.3388947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of Neural Weight Virtualization - which enables fast and scalable in-memory multitask deep learning on memory-constrained embedded systems. The goal of neural weight virtualization is two-fold: (1) packing multiple DNNs into a fixed-sized main memory whose combined memory requirement is larger than the main memory, and (2) enabling fast in-memory execution of the DNNs. To this end, we propose a two-phase approach: (1) virtualization of weight parameters for fine-grained parameter sharing at the level of weights that scales up to multiple heterogeneous DNNs of arbitrary network architectures, and (2) in-memory data structure and run-time execution framework for in-memory execution and context-switching of DNN tasks. We implement two multitask learning systems: (1) an embedded GPU-based mobile robot, and (2) a microcontroller-based IoT device. We thoroughly evaluate the proposed algorithms as well as the two systems that involve ten state-of-the-art DNNs. Our evaluation shows that weight virtualization improves memory efficiency, execution time, and energy efficiency of the multitask learning systems by 4.1x, 36.9x, and 4.2x, respectively.\",\"PeriodicalId\":345029,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386901.3388947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386901.3388947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and scalable in-memory deep multitask learning via neural weight virtualization
This paper introduces the concept of Neural Weight Virtualization - which enables fast and scalable in-memory multitask deep learning on memory-constrained embedded systems. The goal of neural weight virtualization is two-fold: (1) packing multiple DNNs into a fixed-sized main memory whose combined memory requirement is larger than the main memory, and (2) enabling fast in-memory execution of the DNNs. To this end, we propose a two-phase approach: (1) virtualization of weight parameters for fine-grained parameter sharing at the level of weights that scales up to multiple heterogeneous DNNs of arbitrary network architectures, and (2) in-memory data structure and run-time execution framework for in-memory execution and context-switching of DNN tasks. We implement two multitask learning systems: (1) an embedded GPU-based mobile robot, and (2) a microcontroller-based IoT device. We thoroughly evaluate the proposed algorithms as well as the two systems that involve ten state-of-the-art DNNs. Our evaluation shows that weight virtualization improves memory efficiency, execution time, and energy efficiency of the multitask learning systems by 4.1x, 36.9x, and 4.2x, respectively.