GDDR:基于gnn的数据驱动路由

Oliver Hope, Eiko Yoneki
{"title":"GDDR:基于gnn的数据驱动路由","authors":"Oliver Hope, Eiko Yoneki","doi":"10.1109/ICDCS51616.2021.00056","DOIUrl":null,"url":null,"abstract":"We explore the feasibility of combining Graph Neural Network-based policy architectures with Deep Reinforcement Learning as an approach to problems in systems. This fits particularly well with operations on networks, which naturally take the form of graphs. As a case study, we take the idea of data-driven routing in intradomain traffic engineering, whereby the routing of data in a network can be managed taking into account the data itself. The particular subproblem which we examine is minimising link congestion in networks using knowledge of historic traffic flows. We show through experiments that an approach using Graph Neural Networks (GNNs) performs at least as well as previous work using Multilayer Perceptron architectures. GNNs have the added benefit that they allow for the generalisation of trained agents to different network topologies with no extra work. Furthermore, we believe that this technique is applicable to a far wider selection of problems in systems research.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"GDDR: GNN-based Data-Driven Routing\",\"authors\":\"Oliver Hope, Eiko Yoneki\",\"doi\":\"10.1109/ICDCS51616.2021.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the feasibility of combining Graph Neural Network-based policy architectures with Deep Reinforcement Learning as an approach to problems in systems. This fits particularly well with operations on networks, which naturally take the form of graphs. As a case study, we take the idea of data-driven routing in intradomain traffic engineering, whereby the routing of data in a network can be managed taking into account the data itself. The particular subproblem which we examine is minimising link congestion in networks using knowledge of historic traffic flows. We show through experiments that an approach using Graph Neural Networks (GNNs) performs at least as well as previous work using Multilayer Perceptron architectures. GNNs have the added benefit that they allow for the generalisation of trained agents to different network topologies with no extra work. Furthermore, we believe that this technique is applicable to a far wider selection of problems in systems research.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们探索了将基于图神经网络的策略架构与深度强化学习相结合作为解决系统问题的方法的可行性。这特别适合于网络上的操作,网络上的操作通常采用图的形式。作为一个案例研究,我们在域内流量工程中采用数据驱动路由的思想,即可以考虑数据本身来管理网络中数据的路由。我们研究的特定子问题是利用历史交通流的知识最小化网络中的链路拥塞。我们通过实验证明,使用图神经网络(gnn)的方法至少与以前使用多层感知器架构的工作一样好。gnn还有一个额外的好处,即它们允许将训练过的代理推广到不同的网络拓扑,而不需要额外的工作。此外,我们相信这种技术适用于系统研究中更广泛的问题选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GDDR: GNN-based Data-Driven Routing
We explore the feasibility of combining Graph Neural Network-based policy architectures with Deep Reinforcement Learning as an approach to problems in systems. This fits particularly well with operations on networks, which naturally take the form of graphs. As a case study, we take the idea of data-driven routing in intradomain traffic engineering, whereby the routing of data in a network can be managed taking into account the data itself. The particular subproblem which we examine is minimising link congestion in networks using knowledge of historic traffic flows. We show through experiments that an approach using Graph Neural Networks (GNNs) performs at least as well as previous work using Multilayer Perceptron architectures. GNNs have the added benefit that they allow for the generalisation of trained agents to different network topologies with no extra work. Furthermore, we believe that this technique is applicable to a far wider selection of problems in systems research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Location Privacy Attacks and Defense on Point-of-interest Aggregates Hand-Key: Leveraging Multiple Hand Biometrics for Attack-Resilient User Authentication Using COTS RFID Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning The Vertical Cuckoo Filters: A Family of Insertion-friendly Sketches for Online Applications Dyconits: Scaling Minecraft-like Services through Dynamically Managed Inconsistency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1