{"title":"利用稀疏cnn的高能效推理加速器","authors":"Ning Li","doi":"10.1145/3404555.3404626","DOIUrl":null,"url":null,"abstract":"The significantly growing computation and memory demands have become a bottleneck for the application of convolutional neural networks (CNNs). Model compression is an efficient method to accelerate CNNs. However, the commonly designed architectures are not suitable for compressed models and waste large computational resources on zero operands. In this work, we propose a flexible CNNs inference accelerator on FPGA utilizing uniform sparsity introduced by pattern pruning to achieve high performance. Our accelerator architecture exploits different input & output parallelism for sparse computation to maximize the utilization of computing arrays. A dynamically adjustable mechanism is designed to deal with the unbalanced workload. What's more, a novel data buffering structure with slightly rearranged sequences is applied to address the challenge of access conflict. The experiments show that our accelerator can achieve 316.4 GOP/s ~ 343.5 GOP/s for VGG-16 and ResNet-50.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A High Energy-Efficiency Inference Accelerator Exploiting Sparse CNNs\",\"authors\":\"Ning Li\",\"doi\":\"10.1145/3404555.3404626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significantly growing computation and memory demands have become a bottleneck for the application of convolutional neural networks (CNNs). Model compression is an efficient method to accelerate CNNs. However, the commonly designed architectures are not suitable for compressed models and waste large computational resources on zero operands. In this work, we propose a flexible CNNs inference accelerator on FPGA utilizing uniform sparsity introduced by pattern pruning to achieve high performance. Our accelerator architecture exploits different input & output parallelism for sparse computation to maximize the utilization of computing arrays. A dynamically adjustable mechanism is designed to deal with the unbalanced workload. What's more, a novel data buffering structure with slightly rearranged sequences is applied to address the challenge of access conflict. The experiments show that our accelerator can achieve 316.4 GOP/s ~ 343.5 GOP/s for VGG-16 and ResNet-50.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

不断增长的计算量和内存需求已经成为卷积神经网络(cnn)应用的瓶颈。模型压缩是加速cnn的一种有效方法。然而,通常设计的架构不适合压缩模型,并且在零操作数上浪费了大量的计算资源。在这项工作中,我们在FPGA上提出了一个灵活的cnn推理加速器,利用模式修剪引入的均匀稀疏性来实现高性能。我们的加速器架构利用不同的输入和输出并行性进行稀疏计算,以最大限度地利用计算阵列。设计了一种动态调节机制来处理不平衡的工作负载。此外,为了解决访问冲突的问题,采用了一种新的数据缓冲结构,其序列稍微重新排列。实验表明,对于VGG-16和ResNet-50,我们的加速器可以达到316.4 ~ 343.5 GOP/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High Energy-Efficiency Inference Accelerator Exploiting Sparse CNNs
The significantly growing computation and memory demands have become a bottleneck for the application of convolutional neural networks (CNNs). Model compression is an efficient method to accelerate CNNs. However, the commonly designed architectures are not suitable for compressed models and waste large computational resources on zero operands. In this work, we propose a flexible CNNs inference accelerator on FPGA utilizing uniform sparsity introduced by pattern pruning to achieve high performance. Our accelerator architecture exploits different input & output parallelism for sparse computation to maximize the utilization of computing arrays. A dynamically adjustable mechanism is designed to deal with the unbalanced workload. What's more, a novel data buffering structure with slightly rearranged sequences is applied to address the challenge of access conflict. The experiments show that our accelerator can achieve 316.4 GOP/s ~ 343.5 GOP/s for VGG-16 and ResNet-50.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1