射频接收机低噪声放大器的设计概念

Sumathi Manickam
{"title":"射频接收机低噪声放大器的设计概念","authors":"Sumathi Manickam","doi":"10.5772/INTECHOPEN.79187","DOIUrl":null,"url":null,"abstract":"The development of high-performance radio frequency (RF) transceivers or multi- standard/reconfigurable receivers requires an innovative RF front-end design to ensure the best from a good technology. In general, the performance of front-end and/or building blocks can be improved only by an increase in the supply voltage, width of the transistors or an additional stage at the output of a circuit. This leads to increase the design issues like circuit size and the power consumption. Presently, the wireless market and the need to develop efficient portable electronic systems have pushed the industry to the production of circuit designs with low-voltage power supply. The objective of this work is to introduce an innovative single-stage design structure of low noise amplifier (LNA) to achieve higher performance under low operating voltage. TSMC 0.18 micron CMOS technology scale is utilized for realizing LNA designs and the simulation process is carried out with a supply voltage of 1.8 V. The LNA performance measures are analyzed by using an Intel Core2 duo CPU E7400@2.80GHz processor with Agilent ’ s Advanced Design System (ADS) 2009 version software.","PeriodicalId":281802,"journal":{"name":"RF Systems, Circuits and Components","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers\",\"authors\":\"Sumathi Manickam\",\"doi\":\"10.5772/INTECHOPEN.79187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-performance radio frequency (RF) transceivers or multi- standard/reconfigurable receivers requires an innovative RF front-end design to ensure the best from a good technology. In general, the performance of front-end and/or building blocks can be improved only by an increase in the supply voltage, width of the transistors or an additional stage at the output of a circuit. This leads to increase the design issues like circuit size and the power consumption. Presently, the wireless market and the need to develop efficient portable electronic systems have pushed the industry to the production of circuit designs with low-voltage power supply. The objective of this work is to introduce an innovative single-stage design structure of low noise amplifier (LNA) to achieve higher performance under low operating voltage. TSMC 0.18 micron CMOS technology scale is utilized for realizing LNA designs and the simulation process is carried out with a supply voltage of 1.8 V. The LNA performance measures are analyzed by using an Intel Core2 duo CPU E7400@2.80GHz processor with Agilent ’ s Advanced Design System (ADS) 2009 version software.\",\"PeriodicalId\":281802,\"journal\":{\"name\":\"RF Systems, Circuits and Components\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RF Systems, Circuits and Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RF Systems, Circuits and Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高性能射频(RF)收发器或多标准/可重构接收器的发展需要创新的射频前端设计,以确保良好技术的最佳效果。一般来说,前端和/或构建模块的性能只能通过增加电源电压、晶体管宽度或电路输出端的附加级来改善。这导致增加设计问题,如电路尺寸和功耗。目前,无线市场的发展和开发高效便携式电子系统的需求推动了该行业采用低压电源设计电路的生产。本研究的目的是介绍一种创新的低噪声放大器(LNA)单级设计结构,以在低工作电压下实现更高的性能。采用TSMC 0.18微米CMOS工艺尺度实现LNA设计,并在1.8 V电源电压下进行仿真。采用Intel Core2双核CPU E7400@2.80GHz处理器和安捷伦高级设计系统(ADS) 2009版软件对LNA性能进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers
The development of high-performance radio frequency (RF) transceivers or multi- standard/reconfigurable receivers requires an innovative RF front-end design to ensure the best from a good technology. In general, the performance of front-end and/or building blocks can be improved only by an increase in the supply voltage, width of the transistors or an additional stage at the output of a circuit. This leads to increase the design issues like circuit size and the power consumption. Presently, the wireless market and the need to develop efficient portable electronic systems have pushed the industry to the production of circuit designs with low-voltage power supply. The objective of this work is to introduce an innovative single-stage design structure of low noise amplifier (LNA) to achieve higher performance under low operating voltage. TSMC 0.18 micron CMOS technology scale is utilized for realizing LNA designs and the simulation process is carried out with a supply voltage of 1.8 V. The LNA performance measures are analyzed by using an Intel Core2 duo CPU E7400@2.80GHz processor with Agilent ’ s Advanced Design System (ADS) 2009 version software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF) RF Desensitization in Wireless Devices Low-Dimensional Materials for Disruptive Microwave Antennas Design Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers Computer-Aided Design of Microwave-Photonics-Based RF Circuits and Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1