同行评议分级:减轻学术论文评议过程的双重角色方法

Ines Arous, Jie Yang, Mourad Khayati, P. Cudré-Mauroux
{"title":"同行评议分级:减轻学术论文评议过程的双重角色方法","authors":"Ines Arous, Jie Yang, Mourad Khayati, P. Cudré-Mauroux","doi":"10.1145/3442381.3450088","DOIUrl":null,"url":null,"abstract":"Scientific peer review is pivotal to maintain quality standards for academic publication. The effectiveness of the reviewing process is currently being challenged by the rapid increase of paper submissions in various conferences. Those venues need to recruit a large number of reviewers of different levels of expertise and background. The submitted reviews often do not meet the conformity standards of the conferences. Such a situation poses an ever-bigger burden on the meta-reviewers when trying to reach a final decision. In this work, we propose a human-AI approach that estimates the conformity of reviews to the conference standards. Specifically, we ask peers to grade each other’s reviews anonymously with respect to important criteria of review conformity such as sufficient justification and objectivity. We introduce a Bayesian framework that learns the conformity of reviews from both the peer grading process, historical reviews and decisions of a conference, while taking into account grading reliability. Our approach helps meta-reviewers easily identify reviews that require clarification and detect submissions requiring discussions while not inducing additional overhead from reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as graders, we show that the proposed approach outperforms machine learning or review grades alone and that it can be easily integrated into existing peer review systems.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Peer Grading the Peer Reviews: A Dual-Role Approach for Lightening the Scholarly Paper Review Process\",\"authors\":\"Ines Arous, Jie Yang, Mourad Khayati, P. Cudré-Mauroux\",\"doi\":\"10.1145/3442381.3450088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific peer review is pivotal to maintain quality standards for academic publication. The effectiveness of the reviewing process is currently being challenged by the rapid increase of paper submissions in various conferences. Those venues need to recruit a large number of reviewers of different levels of expertise and background. The submitted reviews often do not meet the conformity standards of the conferences. Such a situation poses an ever-bigger burden on the meta-reviewers when trying to reach a final decision. In this work, we propose a human-AI approach that estimates the conformity of reviews to the conference standards. Specifically, we ask peers to grade each other’s reviews anonymously with respect to important criteria of review conformity such as sufficient justification and objectivity. We introduce a Bayesian framework that learns the conformity of reviews from both the peer grading process, historical reviews and decisions of a conference, while taking into account grading reliability. Our approach helps meta-reviewers easily identify reviews that require clarification and detect submissions requiring discussions while not inducing additional overhead from reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as graders, we show that the proposed approach outperforms machine learning or review grades alone and that it can be easily integrated into existing peer review systems.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3450088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3450088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

科学同行评议是保持学术出版质量标准的关键。审查过程的有效性目前正受到各种会议上提交的论文迅速增加的挑战。这些场所需要招募大量具有不同专业知识水平和背景的审稿人。提交的审稿往往不符合会议的一致性标准。这种情况给试图做出最终决定的元审稿人带来了更大的负担。在这项工作中,我们提出了一种人类-人工智能方法来估计评论是否符合会议标准。具体地说,我们要求同行根据评审一致性的重要标准,如充分的理由和客观性,匿名地给彼此的评审打分。我们引入了一个贝叶斯框架,该框架从同行评分过程、历史评估和会议决策中学习评估的一致性,同时考虑了评分的可靠性。我们的方法可以帮助元审稿人轻松地识别需要澄清的审稿,并检测需要讨论的提交,同时不会引起审稿人额外的开销。通过一项大规模的众包研究,在这项研究中,众包工作者被招募为评分者,我们表明,所提出的方法优于机器学习或单独的评分,并且可以很容易地集成到现有的同行评议系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peer Grading the Peer Reviews: A Dual-Role Approach for Lightening the Scholarly Paper Review Process
Scientific peer review is pivotal to maintain quality standards for academic publication. The effectiveness of the reviewing process is currently being challenged by the rapid increase of paper submissions in various conferences. Those venues need to recruit a large number of reviewers of different levels of expertise and background. The submitted reviews often do not meet the conformity standards of the conferences. Such a situation poses an ever-bigger burden on the meta-reviewers when trying to reach a final decision. In this work, we propose a human-AI approach that estimates the conformity of reviews to the conference standards. Specifically, we ask peers to grade each other’s reviews anonymously with respect to important criteria of review conformity such as sufficient justification and objectivity. We introduce a Bayesian framework that learns the conformity of reviews from both the peer grading process, historical reviews and decisions of a conference, while taking into account grading reliability. Our approach helps meta-reviewers easily identify reviews that require clarification and detect submissions requiring discussions while not inducing additional overhead from reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as graders, we show that the proposed approach outperforms machine learning or review grades alone and that it can be easily integrated into existing peer review systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1