利用随机临界性分析识别制造系统中的瓶颈

J. Bastos, Bram van der Sanden, O. Donk, J. Voeten, S. Stuijk, R. Schiffelers, H. Corporaal
{"title":"利用随机临界性分析识别制造系统中的瓶颈","authors":"J. Bastos, Bram van der Sanden, O. Donk, J. Voeten, S. Stuijk, R. Schiffelers, H. Corporaal","doi":"10.1109/FDL.2017.8303901","DOIUrl":null,"url":null,"abstract":"System design is a difficult process with many design-choices for which the impact may be difficult to foresee. Manufacturing system design is no exception to this. Increased use of flexible manufacturing systems which are able to perform different operations/use-cases further raises the design complexity. One important criterion to consider is the overall makespan and associated critical path for the different use-cases of the system. Stochastic critical path analysis plays a fundamental role in providing useful feedback for system designers to evaluate alternative specifications, which traditional fixed-time analysis cannot. In this paper, we extend our formal model-based framework, for the specification and design of manufacturing systems, with stochastic analysis abilities by associating a criticality index to each action performed by the system. This index can then be visualized and used within the framework such that a system designer can make better informed decisions. We propose a Monte-Carlo method as an estimation algorithm and we explicitly define and use confidence intervals to achieve an acceptable estimation error. We further demonstrate the use of the extended framework and stochastic analysis with an example manufacturing system.","PeriodicalId":370459,"journal":{"name":"2017 Forum on Specification and Design Languages (FDL)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying bottlenecks in manufacturing systems using stochastic criticality analysis\",\"authors\":\"J. Bastos, Bram van der Sanden, O. Donk, J. Voeten, S. Stuijk, R. Schiffelers, H. Corporaal\",\"doi\":\"10.1109/FDL.2017.8303901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System design is a difficult process with many design-choices for which the impact may be difficult to foresee. Manufacturing system design is no exception to this. Increased use of flexible manufacturing systems which are able to perform different operations/use-cases further raises the design complexity. One important criterion to consider is the overall makespan and associated critical path for the different use-cases of the system. Stochastic critical path analysis plays a fundamental role in providing useful feedback for system designers to evaluate alternative specifications, which traditional fixed-time analysis cannot. In this paper, we extend our formal model-based framework, for the specification and design of manufacturing systems, with stochastic analysis abilities by associating a criticality index to each action performed by the system. This index can then be visualized and used within the framework such that a system designer can make better informed decisions. We propose a Monte-Carlo method as an estimation algorithm and we explicitly define and use confidence intervals to achieve an acceptable estimation error. We further demonstrate the use of the extended framework and stochastic analysis with an example manufacturing system.\",\"PeriodicalId\":370459,\"journal\":{\"name\":\"2017 Forum on Specification and Design Languages (FDL)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Specification and Design Languages (FDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FDL.2017.8303901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Specification and Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL.2017.8303901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

系统设计是一个困难的过程,有许多设计选择,其影响可能难以预见。制造系统设计也不例外。越来越多地使用能够执行不同操作/用例的柔性制造系统,进一步提高了设计的复杂性。要考虑的一个重要标准是系统的不同用例的总体完工时间和相关的关键路径。随机关键路径分析在为系统设计者提供有用的反馈以评估可选规格方面发挥了重要作用,这是传统的固定时间分析所不能做到的。在本文中,我们扩展了正式的基于模型的框架,用于制造系统的规范和设计,通过将临界指标与系统执行的每个动作关联起来,具有随机分析能力。然后可以将该索引可视化并在框架中使用,以便系统设计人员可以做出更明智的决策。我们提出了一种蒙特卡罗方法作为估计算法,并明确定义和使用置信区间来实现可接受的估计误差。我们通过一个制造系统实例进一步演示了扩展框架和随机分析的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying bottlenecks in manufacturing systems using stochastic criticality analysis
System design is a difficult process with many design-choices for which the impact may be difficult to foresee. Manufacturing system design is no exception to this. Increased use of flexible manufacturing systems which are able to perform different operations/use-cases further raises the design complexity. One important criterion to consider is the overall makespan and associated critical path for the different use-cases of the system. Stochastic critical path analysis plays a fundamental role in providing useful feedback for system designers to evaluate alternative specifications, which traditional fixed-time analysis cannot. In this paper, we extend our formal model-based framework, for the specification and design of manufacturing systems, with stochastic analysis abilities by associating a criticality index to each action performed by the system. This index can then be visualized and used within the framework such that a system designer can make better informed decisions. We propose a Monte-Carlo method as an estimation algorithm and we explicitly define and use confidence intervals to achieve an acceptable estimation error. We further demonstrate the use of the extended framework and stochastic analysis with an example manufacturing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolic simulation of dataflow synchronous programs with timers Towards consistency checking between HDL and UPF descriptions Real-time ticks for synchronous programming Asil decomposition using SMT Rethinking of I/O-automata composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1