用监督神经网络预测失业率

Saloni Sharma, Sanjay Singh
{"title":"用监督神经网络预测失业率","authors":"Saloni Sharma, Sanjay Singh","doi":"10.1109/CONFLUENCE.2016.7508042","DOIUrl":null,"url":null,"abstract":"This study investigates the efficiency of various models used to forecast unemployment rates. The objective of the study is to find the model which most accurately predicts the unemployment rates. It starts with auto regressive models like autoregressive moving average model and smooth transition auto regressive model and then continues to explore four types of neural networks, namely multi layer perceptron, recurrent neural network, psi sigma neural network and radial basis function neural network. In addition to these, it also uses learning vector quantization in a combination with radial basis neural network. The results have shown that the combination of learning vector quantization and radial basis function neural network outperforms all the other forecasting models. It further uses ensemble techniques like support vector regression, simple average, to give even more accurate results.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unemployment rates forecasting using supervised neural networks\",\"authors\":\"Saloni Sharma, Sanjay Singh\",\"doi\":\"10.1109/CONFLUENCE.2016.7508042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the efficiency of various models used to forecast unemployment rates. The objective of the study is to find the model which most accurately predicts the unemployment rates. It starts with auto regressive models like autoregressive moving average model and smooth transition auto regressive model and then continues to explore four types of neural networks, namely multi layer perceptron, recurrent neural network, psi sigma neural network and radial basis function neural network. In addition to these, it also uses learning vector quantization in a combination with radial basis neural network. The results have shown that the combination of learning vector quantization and radial basis function neural network outperforms all the other forecasting models. It further uses ensemble techniques like support vector regression, simple average, to give even more accurate results.\",\"PeriodicalId\":299044,\"journal\":{\"name\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2016.7508042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究考察了用于预测失业率的各种模型的效率。研究的目的是找到最准确地预测失业率的模型。从自回归移动平均模型和平滑过渡自回归模型等自回归模型入手,继续探索多层感知器、递归神经网络、psi - sigma神经网络和径向基函数神经网络等四种神经网络。除此之外,它还将学习向量量化与径向基神经网络相结合。结果表明,学习向量量化与径向基函数神经网络相结合的预测模型优于其他预测模型。它进一步使用集成技术,如支持向量回归,简单平均,以提供更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unemployment rates forecasting using supervised neural networks
This study investigates the efficiency of various models used to forecast unemployment rates. The objective of the study is to find the model which most accurately predicts the unemployment rates. It starts with auto regressive models like autoregressive moving average model and smooth transition auto regressive model and then continues to explore four types of neural networks, namely multi layer perceptron, recurrent neural network, psi sigma neural network and radial basis function neural network. In addition to these, it also uses learning vector quantization in a combination with radial basis neural network. The results have shown that the combination of learning vector quantization and radial basis function neural network outperforms all the other forecasting models. It further uses ensemble techniques like support vector regression, simple average, to give even more accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data capabilities and readiness of South African retail organisations Heuristic model to improve Feature Selection based on Machine Learning in Data Mining Image processing based degraded camera captured document enhancement for improved OCR accuracy Development of IoT based smart security and monitoring devices for agriculture A comprehensive study on Facial Expressions Recognition Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1