影响者的股票交易:研究粉丝基础变化趋势的财务方法

Fabio Bertone, L. Vassio, Martino Trevisan
{"title":"影响者的股票交易:研究粉丝基础变化趋势的财务方法","authors":"Fabio Bertone, L. Vassio, Martino Trevisan","doi":"10.1145/3487351.3488413","DOIUrl":null,"url":null,"abstract":"In many online social networks (OSNs), a limited portion of profiles emerges and reaches a large base of followers, i.e., the so-called social influencers. One of their main goals is to increase their fanbase to increase their visibility, engaging users through their content. In this work, we propose a novel parallel between the ecosystem of OSNs and the stock exchange market. Followers act as private investors, and they follow influencers, i.e., buy stocks, based on their individual preferences and on the information they gather through external sources. In this preliminary study, we show how the approaches proposed in the context of the stock exchange market can be successfully applied to social networks. Our case study focuses on 60 Italian Instagram influencers and shows how their followers short-term trends obtained through Bollinger bands become close to those found in external sources, Google Trends in our case, similarly to phenomena already observed in the financial market. Besides providing a strong correlation between these different trends, our results pose the basis for studying social networks with a new lens, linking them with a different domain.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The stock exchange of influencers: a financial approach for studying fanbase variation trends\",\"authors\":\"Fabio Bertone, L. Vassio, Martino Trevisan\",\"doi\":\"10.1145/3487351.3488413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many online social networks (OSNs), a limited portion of profiles emerges and reaches a large base of followers, i.e., the so-called social influencers. One of their main goals is to increase their fanbase to increase their visibility, engaging users through their content. In this work, we propose a novel parallel between the ecosystem of OSNs and the stock exchange market. Followers act as private investors, and they follow influencers, i.e., buy stocks, based on their individual preferences and on the information they gather through external sources. In this preliminary study, we show how the approaches proposed in the context of the stock exchange market can be successfully applied to social networks. Our case study focuses on 60 Italian Instagram influencers and shows how their followers short-term trends obtained through Bollinger bands become close to those found in external sources, Google Trends in our case, similarly to phenomena already observed in the financial market. Besides providing a strong correlation between these different trends, our results pose the basis for studying social networks with a new lens, linking them with a different domain.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多在线社交网络(OSNs)中,有限部分的个人资料出现并到达大量的追随者,即所谓的社会影响者。他们的主要目标之一是增加他们的粉丝基础,提高他们的知名度,通过他们的内容吸引用户。在这项工作中,我们提出了一种新的osn生态系统与证券交易所市场之间的平行关系。追随者充当私人投资者,他们跟随影响者,即根据他们的个人偏好和通过外部来源收集的信息购买股票。在这项初步研究中,我们展示了在证券交易所市场背景下提出的方法如何成功地应用于社交网络。我们的案例研究聚焦于60位意大利Instagram网红,并展示了他们的追随者通过布林带获得的短期趋势如何与外部来源(在我们的案例中是谷歌趋势)中发现的趋势接近,类似于金融市场中已经观察到的现象。除了提供这些不同趋势之间的强烈相关性之外,我们的研究结果还为用新的视角研究社交网络奠定了基础,将它们与不同的领域联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The stock exchange of influencers: a financial approach for studying fanbase variation trends
In many online social networks (OSNs), a limited portion of profiles emerges and reaches a large base of followers, i.e., the so-called social influencers. One of their main goals is to increase their fanbase to increase their visibility, engaging users through their content. In this work, we propose a novel parallel between the ecosystem of OSNs and the stock exchange market. Followers act as private investors, and they follow influencers, i.e., buy stocks, based on their individual preferences and on the information they gather through external sources. In this preliminary study, we show how the approaches proposed in the context of the stock exchange market can be successfully applied to social networks. Our case study focuses on 60 Italian Instagram influencers and shows how their followers short-term trends obtained through Bollinger bands become close to those found in external sources, Google Trends in our case, similarly to phenomena already observed in the financial market. Besides providing a strong correlation between these different trends, our results pose the basis for studying social networks with a new lens, linking them with a different domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1