海报:应用驱动的近数据处理相似搜索

Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi, L. Ceze, M. Oskin
{"title":"海报:应用驱动的近数据处理相似搜索","authors":"Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi, L. Ceze, M. Oskin","doi":"10.1109/PACT.2017.25","DOIUrl":null,"url":null,"abstract":"Similarity search is a key to important applications such as content-based search, deduplication, natural language processing, computer vision, databases, and graphics. At its core, similarity search manifests as k-nearest neighbors (kNN) which consists of parallel distance calculations and a top-k sort. While kNN is poorly supported by today's architectures, it is ideal for near-data processing because of its high memory bandwidth requirements. This work proposes a near-data processing accelerator for similarity search: the similarity search associative memory (SSAM).","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"POSTER: Application-Driven Near-Data Processing for Similarity Search\",\"authors\":\"Vincent T. Lee, Amrita Mazumdar, Carlo C. del Mundo, Armin Alaghi, L. Ceze, M. Oskin\",\"doi\":\"10.1109/PACT.2017.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search is a key to important applications such as content-based search, deduplication, natural language processing, computer vision, databases, and graphics. At its core, similarity search manifests as k-nearest neighbors (kNN) which consists of parallel distance calculations and a top-k sort. While kNN is poorly supported by today's architectures, it is ideal for near-data processing because of its high memory bandwidth requirements. This work proposes a near-data processing accelerator for similarity search: the similarity search associative memory (SSAM).\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

相似度搜索是诸如基于内容的搜索、重复数据删除、自然语言处理、计算机视觉、数据库和图形等重要应用程序的关键。在其核心,相似性搜索表现为k近邻(kNN),由并行距离计算和top-k排序组成。虽然目前的体系结构对kNN的支持很差,但由于其高内存带宽要求,它是近数据处理的理想选择。本文提出了一种用于相似搜索的近数据处理加速器:相似搜索联想记忆(SSAM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POSTER: Application-Driven Near-Data Processing for Similarity Search
Similarity search is a key to important applications such as content-based search, deduplication, natural language processing, computer vision, databases, and graphics. At its core, similarity search manifests as k-nearest neighbors (kNN) which consists of parallel distance calculations and a top-k sort. While kNN is poorly supported by today's architectures, it is ideal for near-data processing because of its high memory bandwidth requirements. This work proposes a near-data processing accelerator for similarity search: the similarity search associative memory (SSAM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1