分布式在线学习的随机块坐标Frank-Wolfe算法

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2020-05-28 DOI:10.1049/ccs.2020.0007
Jingchao Li, Qingtao Wu, Ruijuan Zheng, Junlong Zhu, Quanbo Ge, Mingchuan Zhang
{"title":"分布式在线学习的随机块坐标Frank-Wolfe算法","authors":"Jingchao Li,&nbsp;Qingtao Wu,&nbsp;Ruijuan Zheng,&nbsp;Junlong Zhu,&nbsp;Quanbo Ge,&nbsp;Mingchuan Zhang","doi":"10.1049/ccs.2020.0007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where <i>T</i> is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0007","citationCount":"1","resultStr":"{\"title\":\"Randomised block-coordinate Frank-Wolfe algorithm for distributed online learning over networks\",\"authors\":\"Jingchao Li,&nbsp;Qingtao Wu,&nbsp;Ruijuan Zheng,&nbsp;Junlong Zhu,&nbsp;Quanbo Ge,&nbsp;Mingchuan Zhang\",\"doi\":\"10.1049/ccs.2020.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where <i>T</i> is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.</p>\\n </div>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0007\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

基于Frank-Wolfe方法的分布式在线算法可以有效地处理约束优化问题。然而,在这些算法中,计算全(次)梯度向量导致每次迭代的计算成本巨大。为了降低上述算法的计算成本,作者提出了一种基于网络的分布式在线随机块坐标Frank-Wolfe算法。在该算法中,网络中的每个agent只需要计算其(子)梯度向量坐标的一个子集。并对该算法的遗憾界进行了详细的理论分析。当所有局部目标函数都满足强凸函数的条件时,算法得到的遗憾界,其中T为总迭代次数。最后,通过仿真实验验证了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Randomised block-coordinate Frank-Wolfe algorithm for distributed online learning over networks

The distributed online algorithms which are based on the Frank-Wolfe method can effectively deal with constrained optimisation problems. However, the calculation of the full (sub)gradient vector in those algorithms leads to a huge computational cost at each iteration. To reduce the computational cost of the algorithms mentioned above, the authors present a distributed online randomised block-coordinate Frank-Wolfe algorithm over networks. Each agent in the networks only needs to calculate a subset of the coordinates of its (sub)gradient vector in this algorithm. Furthermore, they make a detailed theoretical analysis of the regret bound of this algorithm. When all local objective functions satisfy the conditions of strongly convex functions, the authors’ algorithm attains the regret bound of , where T is the total number of iterations. Furthermore, the theorem results are verified via simulation experiments, which show that the algorithm is effective and efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1