使用室内声学响应的无基础设施智能手机室内定位

Dongfang Guo, Wenjie Luo, Chaojie Gu, Yuting Wu, Qun Song, Zhenyu Yan, Rui Tan
{"title":"使用室内声学响应的无基础设施智能手机室内定位","authors":"Dongfang Guo, Wenjie Luo, Chaojie Gu, Yuting Wu, Qun Song, Zhenyu Yan, Rui Tan","doi":"10.1145/3485730.3492877","DOIUrl":null,"url":null,"abstract":"Smartphone indoor location awareness is increasingly demanded by a variety of mobile applications. The existing solutions for accurate smartphone indoor localization rely on additional devices or pre-installed infrastructure (e.g., dense WiFi access points, Bluetooth beacons). In this demo, we present EchoLoc, an infrastructure-free smartphone indoor localization system using room acoustic response to a chirp emitted by the phone. EchoLoc consists of a mobile client for echo data collection and a cloud server hosting a deep neural network for location inference. EchoLoc achieves 95% accuracy in recognizing 101 locations in a large public indoor space and a median localization error of 0.5 m in a typical lab area. Demo video is available at https://youtu.be/5si0Cq6LzT4.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"168 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Infrastructure-Free Smartphone Indoor Localization Using Room Acoustic Responses\",\"authors\":\"Dongfang Guo, Wenjie Luo, Chaojie Gu, Yuting Wu, Qun Song, Zhenyu Yan, Rui Tan\",\"doi\":\"10.1145/3485730.3492877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphone indoor location awareness is increasingly demanded by a variety of mobile applications. The existing solutions for accurate smartphone indoor localization rely on additional devices or pre-installed infrastructure (e.g., dense WiFi access points, Bluetooth beacons). In this demo, we present EchoLoc, an infrastructure-free smartphone indoor localization system using room acoustic response to a chirp emitted by the phone. EchoLoc consists of a mobile client for echo data collection and a cloud server hosting a deep neural network for location inference. EchoLoc achieves 95% accuracy in recognizing 101 locations in a large public indoor space and a median localization error of 0.5 m in a typical lab area. Demo video is available at https://youtu.be/5si0Cq6LzT4.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"168 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3492877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3492877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

各种移动应用对智能手机室内位置感知的需求越来越大。现有的智能手机室内定位解决方案依赖于额外的设备或预先安装的基础设施(例如,密集的WiFi接入点,蓝牙信标)。在这个演示中,我们展示了EchoLoc,这是一个无需基础设施的智能手机室内定位系统,利用房间声学响应手机发出的啁啾。EchoLoc由一个用于回波数据收集的移动客户端和一个托管用于位置推断的深度神经网络的云服务器组成。在大型公共室内空间中,EchoLoc识别101个位置的准确率达到95%,在典型实验室区域中,定位误差中值为0.5 m。演示视频可在https://youtu.be/5si0Cq6LzT4上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrastructure-Free Smartphone Indoor Localization Using Room Acoustic Responses
Smartphone indoor location awareness is increasingly demanded by a variety of mobile applications. The existing solutions for accurate smartphone indoor localization rely on additional devices or pre-installed infrastructure (e.g., dense WiFi access points, Bluetooth beacons). In this demo, we present EchoLoc, an infrastructure-free smartphone indoor localization system using room acoustic response to a chirp emitted by the phone. EchoLoc consists of a mobile client for echo data collection and a cloud server hosting a deep neural network for location inference. EchoLoc achieves 95% accuracy in recognizing 101 locations in a large public indoor space and a median localization error of 0.5 m in a typical lab area. Demo video is available at https://youtu.be/5si0Cq6LzT4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1