基于频域光子迁移的紧凑非侵入性组织癌检测器

Po-An Chen, Chin-Lung Yang, S. Tseng, Ming-Wei Li
{"title":"基于频域光子迁移的紧凑非侵入性组织癌检测器","authors":"Po-An Chen, Chin-Lung Yang, S. Tseng, Ming-Wei Li","doi":"10.1109/ISBB.2014.6820919","DOIUrl":null,"url":null,"abstract":"A 23(cm) × 11(cm) tissue cancer detector based on frequency-domain photon migration (FDPM) technique is studied in this paper. The high cost and bulky network analyzer-based FDPM was implemented on PCB with high phase sensitivity. A Network Analyzer costs over one million NT dollars however the proposed detector costs only about several thousand NT dollars. So the proposed FDPM architecture features on compact, low cost, and portable advantages. A down-converted technique and a zero detector phase error elimination improve both resolution and accuracy of phase measurement. The optical receiver with improvement of both the resolution and the accuracy on amplitude and phase difference measurement are presented in details. The results are compared to a commercial Network Analyzer. Phase and amplitude measured errors compared to commercially Network Analyzer are less than 7 %. It proves that the proposed detector has the capability to replace a commercially Network Analyzer.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact and non-invasive tissue cancer detectors based on frequency-domain photon migration\",\"authors\":\"Po-An Chen, Chin-Lung Yang, S. Tseng, Ming-Wei Li\",\"doi\":\"10.1109/ISBB.2014.6820919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 23(cm) × 11(cm) tissue cancer detector based on frequency-domain photon migration (FDPM) technique is studied in this paper. The high cost and bulky network analyzer-based FDPM was implemented on PCB with high phase sensitivity. A Network Analyzer costs over one million NT dollars however the proposed detector costs only about several thousand NT dollars. So the proposed FDPM architecture features on compact, low cost, and portable advantages. A down-converted technique and a zero detector phase error elimination improve both resolution and accuracy of phase measurement. The optical receiver with improvement of both the resolution and the accuracy on amplitude and phase difference measurement are presented in details. The results are compared to a commercial Network Analyzer. Phase and amplitude measured errors compared to commercially Network Analyzer are less than 7 %. It proves that the proposed detector has the capability to replace a commercially Network Analyzer.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于频域光子迁移(FDPM)技术的23(cm) × 11(cm)组织癌检测器。基于网络分析仪的FDPM在具有高相敏性的PCB上实现了成本高、体积大的FDPM。一台网络分析仪的价格超过一百万台币,而这款检测器的价格仅为几千台币。因此,所提出的FDPM架构具有紧凑、低成本和便携的优点。下转换技术和零检测器相位误差消除技术提高了相位测量的分辨率和精度。详细介绍了一种既提高了分辨率又提高了幅相差测量精度的光接收机。结果与商用网络分析仪进行了比较。与商用网络分析仪相比,相位和幅度测量误差小于7%。实验证明,该检测器具有替代商用网络分析仪的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A compact and non-invasive tissue cancer detectors based on frequency-domain photon migration
A 23(cm) × 11(cm) tissue cancer detector based on frequency-domain photon migration (FDPM) technique is studied in this paper. The high cost and bulky network analyzer-based FDPM was implemented on PCB with high phase sensitivity. A Network Analyzer costs over one million NT dollars however the proposed detector costs only about several thousand NT dollars. So the proposed FDPM architecture features on compact, low cost, and portable advantages. A down-converted technique and a zero detector phase error elimination improve both resolution and accuracy of phase measurement. The optical receiver with improvement of both the resolution and the accuracy on amplitude and phase difference measurement are presented in details. The results are compared to a commercial Network Analyzer. Phase and amplitude measured errors compared to commercially Network Analyzer are less than 7 %. It proves that the proposed detector has the capability to replace a commercially Network Analyzer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stereoscopic laparoscopy using depth information from 3D model Analysis of the multiple ultrasound echoes for measurement of cortical bone thickness Smart cane: Instrumentation of a quad cane with audio-feedback monitoring system for partial weight-bearing support A low power high CMRR CMOS instrumentation amplifier for Bio-impedance Spectroscopy A novel approach for ECG data compression in healthcare monitoring system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1