{"title":"图模型选择使用最大似然","authors":"Ivona Bezáková, A. Kalai, R. Santhanam","doi":"10.1145/1143844.1143858","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Graph model selection using maximum likelihood\",\"authors\":\"Ivona Bezáková, A. Kalai, R. Santhanam\",\"doi\":\"10.1145/1143844.1143858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.