基于离散小波变换和主成分分析的多类肿瘤疾病分类

A. Yousif, Z. Omar, Harith Hamoodat, Neibal Younis Al Morad
{"title":"基于离散小波变换和主成分分析的多类肿瘤疾病分类","authors":"A. Yousif, Z. Omar, Harith Hamoodat, Neibal Younis Al Morad","doi":"10.1109/IECBES54088.2022.10079290","DOIUrl":null,"url":null,"abstract":"A brain tumor is an extreme danger to the patient in the current era, leading to confirmed death. Furthermore, the precise classification of brain tumor image is one of the significant issues in clinical analysis fields. Therefore, enhancing tumor classification is required in the medical area. Moreover, brain tumor classification using machine learning (ML) for Magnetic Resonance Imaging scan (MRI) plays a huge vital role in different treatments applications. However, unfortunately, the previous schemes have recorded insufficient accuracy in the classification of brain tumors. The introduced technique contains feature extraction, feature reduction, and classification-based machine learning. Firstly, the low-frequency features of images using Discrete wavelet Transformation (DWT) have been obtained. Secondly, the reduced features have been provided using Principal Component Analysis (PCA). Lastly, The Random Forest (RF) classifier has been used to classify seven tumor classes. RF has obtained classification with a success of accuracy-based-metric with 96.83%. This result explores that the introduced DWT-PCA is more effective than other recent schemes.Clinical Relevance–Tumor Diseases.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Class Tumor Diseases Classification Using Discrete Wavelet Transform and Principal Component Analysis\",\"authors\":\"A. Yousif, Z. Omar, Harith Hamoodat, Neibal Younis Al Morad\",\"doi\":\"10.1109/IECBES54088.2022.10079290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A brain tumor is an extreme danger to the patient in the current era, leading to confirmed death. Furthermore, the precise classification of brain tumor image is one of the significant issues in clinical analysis fields. Therefore, enhancing tumor classification is required in the medical area. Moreover, brain tumor classification using machine learning (ML) for Magnetic Resonance Imaging scan (MRI) plays a huge vital role in different treatments applications. However, unfortunately, the previous schemes have recorded insufficient accuracy in the classification of brain tumors. The introduced technique contains feature extraction, feature reduction, and classification-based machine learning. Firstly, the low-frequency features of images using Discrete wavelet Transformation (DWT) have been obtained. Secondly, the reduced features have been provided using Principal Component Analysis (PCA). Lastly, The Random Forest (RF) classifier has been used to classify seven tumor classes. RF has obtained classification with a success of accuracy-based-metric with 96.83%. This result explores that the introduced DWT-PCA is more effective than other recent schemes.Clinical Relevance–Tumor Diseases.\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今时代,脑瘤对病人来说是一种极端的危险,会导致确诊的死亡。此外,脑肿瘤图像的精确分类是临床分析领域的重要问题之一。因此,在医学领域加强肿瘤分类是必要的。此外,使用机器学习(ML)进行磁共振成像扫描(MRI)的脑肿瘤分类在不同的治疗应用中起着至关重要的作用。然而,不幸的是,以前的方案在脑肿瘤分类中记录的准确性不足。介绍的技术包括特征提取、特征约简和基于分类的机器学习。首先,利用离散小波变换(DWT)获得图像的低频特征;其次,利用主成分分析(PCA)提供约简特征;最后,使用随机森林分类器对7种肿瘤进行分类。RF获得了基于准确率的分类成功率为96.83%。这一结果表明,引入的DWT-PCA比其他现有的方法更有效。临床相关性-肿瘤疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Class Tumor Diseases Classification Using Discrete Wavelet Transform and Principal Component Analysis
A brain tumor is an extreme danger to the patient in the current era, leading to confirmed death. Furthermore, the precise classification of brain tumor image is one of the significant issues in clinical analysis fields. Therefore, enhancing tumor classification is required in the medical area. Moreover, brain tumor classification using machine learning (ML) for Magnetic Resonance Imaging scan (MRI) plays a huge vital role in different treatments applications. However, unfortunately, the previous schemes have recorded insufficient accuracy in the classification of brain tumors. The introduced technique contains feature extraction, feature reduction, and classification-based machine learning. Firstly, the low-frequency features of images using Discrete wavelet Transformation (DWT) have been obtained. Secondly, the reduced features have been provided using Principal Component Analysis (PCA). Lastly, The Random Forest (RF) classifier has been used to classify seven tumor classes. RF has obtained classification with a success of accuracy-based-metric with 96.83%. This result explores that the introduced DWT-PCA is more effective than other recent schemes.Clinical Relevance–Tumor Diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1