预测挥发性物质滥用的机器学习方法,用于药物风险分析

Priyanka Nath, Sumran Kilam, A. Swetapadma
{"title":"预测挥发性物质滥用的机器学习方法,用于药物风险分析","authors":"Priyanka Nath, Sumran Kilam, A. Swetapadma","doi":"10.1109/ICRCICN.2017.8234516","DOIUrl":null,"url":null,"abstract":"In this work a machine learning approach is proposed for prediction of volatile substance abuse. Machine learning technique used in this work is artificial neural networks (ANN). Two ANN modules are designed, ANN-D to predict whether a person is using VSA or not and ANN-C to predict the time of use. Input features used are age, gender, country, ethnicity, education, neuroticism, openness to experience, extraversion, agreeableness, conscientiousness, impulsiveness, sensation seeking etc. Input features are given to the ANN-Dmodule to predict if volatile substance abuse (VSA) has been done by the person or not. ANN-C module predicts the use of VSA in terms of time such as day, week, month, year, decade, beforea decade, etc. The accuracy of the ANN-D module is found to be 81% and ANN-C module is 71.9%. Hence the proposed method can be used for drug analysis to some extent.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A machine learning approach to predict volatile substance abuse for drug risk analysis\",\"authors\":\"Priyanka Nath, Sumran Kilam, A. Swetapadma\",\"doi\":\"10.1109/ICRCICN.2017.8234516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a machine learning approach is proposed for prediction of volatile substance abuse. Machine learning technique used in this work is artificial neural networks (ANN). Two ANN modules are designed, ANN-D to predict whether a person is using VSA or not and ANN-C to predict the time of use. Input features used are age, gender, country, ethnicity, education, neuroticism, openness to experience, extraversion, agreeableness, conscientiousness, impulsiveness, sensation seeking etc. Input features are given to the ANN-Dmodule to predict if volatile substance abuse (VSA) has been done by the person or not. ANN-C module predicts the use of VSA in terms of time such as day, week, month, year, decade, beforea decade, etc. The accuracy of the ANN-D module is found to be 81% and ANN-C module is 71.9%. Hence the proposed method can be used for drug analysis to some extent.\",\"PeriodicalId\":166298,\"journal\":{\"name\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2017.8234516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,提出了一种用于预测挥发性物质滥用的机器学习方法。在这项工作中使用的机器学习技术是人工神经网络(ANN)。设计了两个人工神经网络模块,ANN- d用于预测一个人是否在使用VSA, ANN- c用于预测使用时间。输入特征包括年龄、性别、国家、种族、教育程度、神经质、经验开放性、外向性、宜人性、尽责性、冲动性、寻求感觉等。输入特征被赋予ANN-Dmodule来预测是否有挥发性物质滥用(VSA)行为。ANN-C模块预测VSA的使用时间,如日、周、月、年、十年、十年前等。ANN-D模块的精度为81%,ANN-C模块的精度为71.9%。因此,该方法在一定程度上可用于药物分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach to predict volatile substance abuse for drug risk analysis
In this work a machine learning approach is proposed for prediction of volatile substance abuse. Machine learning technique used in this work is artificial neural networks (ANN). Two ANN modules are designed, ANN-D to predict whether a person is using VSA or not and ANN-C to predict the time of use. Input features used are age, gender, country, ethnicity, education, neuroticism, openness to experience, extraversion, agreeableness, conscientiousness, impulsiveness, sensation seeking etc. Input features are given to the ANN-Dmodule to predict if volatile substance abuse (VSA) has been done by the person or not. ANN-C module predicts the use of VSA in terms of time such as day, week, month, year, decade, beforea decade, etc. The accuracy of the ANN-D module is found to be 81% and ANN-C module is 71.9%. Hence the proposed method can be used for drug analysis to some extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RGB image encryption using hyper chaotic system Characterisation of wireless network traffic: Fractality and stationarity Security risk assessment in online social networking: A detailed survey Optimalized hydel-thermic operative planning using IRECGA Designing an enhanced ZRP algorithm for MANET and simulation using OPNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1