S. RajeshJ., D. Ancajas, Koushik Chakraborty, Sanghamitra Roy
{"title":"利用时序误差弹性处理NoC电压突发事件","authors":"S. RajeshJ., D. Ancajas, Koushik Chakraborty, Sanghamitra Roy","doi":"10.1109/ISLPED.2015.7273498","DOIUrl":null,"url":null,"abstract":"Aggressive technology scaling exacerbates the problem of voltage emergencies in emerging MPSoC systems. Network-on-Chips, the de-facto standard for connecting on-chip components in forthcoming devices play a central role in providing robust and reliable communication. In this work, we propose DrNoC (droop resilient network-on-chip)-two microarchitectural techniques to mitigate voltage emergency-induced timing errors in NoCs and preserve error-free communication throughout the network. DrNoC employs frequency downscaling and a pipeline error-recovery mechanism to reclaim corrupted flits in the router. Compared to the recently proposed NSFTR fault-tolerant technique, DrNoC offers a 27% improvement in energy-delay efficiency.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tackling voltage emergencies in NoC through timing error resilience\",\"authors\":\"S. RajeshJ., D. Ancajas, Koushik Chakraborty, Sanghamitra Roy\",\"doi\":\"10.1109/ISLPED.2015.7273498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggressive technology scaling exacerbates the problem of voltage emergencies in emerging MPSoC systems. Network-on-Chips, the de-facto standard for connecting on-chip components in forthcoming devices play a central role in providing robust and reliable communication. In this work, we propose DrNoC (droop resilient network-on-chip)-two microarchitectural techniques to mitigate voltage emergency-induced timing errors in NoCs and preserve error-free communication throughout the network. DrNoC employs frequency downscaling and a pipeline error-recovery mechanism to reclaim corrupted flits in the router. Compared to the recently proposed NSFTR fault-tolerant technique, DrNoC offers a 27% improvement in energy-delay efficiency.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tackling voltage emergencies in NoC through timing error resilience
Aggressive technology scaling exacerbates the problem of voltage emergencies in emerging MPSoC systems. Network-on-Chips, the de-facto standard for connecting on-chip components in forthcoming devices play a central role in providing robust and reliable communication. In this work, we propose DrNoC (droop resilient network-on-chip)-two microarchitectural techniques to mitigate voltage emergency-induced timing errors in NoCs and preserve error-free communication throughout the network. DrNoC employs frequency downscaling and a pipeline error-recovery mechanism to reclaim corrupted flits in the router. Compared to the recently proposed NSFTR fault-tolerant technique, DrNoC offers a 27% improvement in energy-delay efficiency.