基于掩模R-CNN的乳腺癌病灶检测与分割

Hama Soltani, M. Amroune, Issam Bendib, M. Haouam
{"title":"基于掩模R-CNN的乳腺癌病灶检测与分割","authors":"Hama Soltani, M. Amroune, Issam Bendib, M. Haouam","doi":"10.1109/ICRAMI52622.2021.9585913","DOIUrl":null,"url":null,"abstract":"Breast cancer is an obsession that haunts all women. but early detection for it increases the cure rate, for attain this objective It is very important to create a system to diagnose suspicious masses. On the other hand, is a difficult task due to the fact that breast lumps vary in size and appearance. In this paper, we propose an automatic breast mass segmentation method based on the Mask RCNN model of deep learning using detectron2.our model is trained and testing using the public dataset INbreast. The proposed method achieved results with precision and F1 score 95.87 and 81.05 on INbreast dataset, respectively.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Breast Cancer Lesion Detection and Segmentation Based On Mask R-CNN\",\"authors\":\"Hama Soltani, M. Amroune, Issam Bendib, M. Haouam\",\"doi\":\"10.1109/ICRAMI52622.2021.9585913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is an obsession that haunts all women. but early detection for it increases the cure rate, for attain this objective It is very important to create a system to diagnose suspicious masses. On the other hand, is a difficult task due to the fact that breast lumps vary in size and appearance. In this paper, we propose an automatic breast mass segmentation method based on the Mask RCNN model of deep learning using detectron2.our model is trained and testing using the public dataset INbreast. The proposed method achieved results with precision and F1 score 95.87 and 81.05 on INbreast dataset, respectively.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

乳腺癌一直困扰着所有女性。为了达到这一目的,建立一套诊断可疑肿块的系统是非常重要的。另一方面,这是一项艰巨的任务,因为乳房肿块的大小和外观各不相同。在本文中,我们提出了一种基于深度学习Mask RCNN模型的乳房质量自动分割方法。我们的模型使用INbreast的公共数据集进行训练和测试。该方法在INbreast数据集上的准确率为95.87,F1得分为81.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breast Cancer Lesion Detection and Segmentation Based On Mask R-CNN
Breast cancer is an obsession that haunts all women. but early detection for it increases the cure rate, for attain this objective It is very important to create a system to diagnose suspicious masses. On the other hand, is a difficult task due to the fact that breast lumps vary in size and appearance. In this paper, we propose an automatic breast mass segmentation method based on the Mask RCNN model of deep learning using detectron2.our model is trained and testing using the public dataset INbreast. The proposed method achieved results with precision and F1 score 95.87 and 81.05 on INbreast dataset, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1