R. Bartolozzi, V. Landersheim, G. Stoll, H. Holzmann, Riccardo Möller, H. Atzrodt
{"title":"自动驾驶功能和系统虚拟测试的车辆仿真模型链*","authors":"R. Bartolozzi, V. Landersheim, G. Stoll, H. Holzmann, Riccardo Möller, H. Atzrodt","doi":"10.1109/iv51971.2022.9827074","DOIUrl":null,"url":null,"abstract":"One of the major challenges of testing and validation of automated vehicles is covering the enormous amount of possible driving situations. Efficient and reliable simulation tools are therefore required to speed up those phases. The SET Level project aims at providing an environment for simulation-based test and development of automated driving functions, focusing, as one of its main objectives, on providing an open, flexible, and extendable simulation environment, compliant to current simulation standards as Functional Mock-up Interface (FMI) and Open Simulation Interface (OSI). Within this context, the authors proposed a vehicle simulation model chain including models of motion control, actuators (with actuator management) and vehicle dynamics with two different detail levels. The models were built in Matlab/Simulink, including a developed OSI wrapper for integration into existing simulation environments. In the paper, the simulation architecture including the OSI wrapper and the single models of the chain is presented, as well as simulation results, showing the potential of the presented model chain in carrying out analyses in the field of testing automated driving functions.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle simulation model chain for virtual testing of automated driving functions and systems*\",\"authors\":\"R. Bartolozzi, V. Landersheim, G. Stoll, H. Holzmann, Riccardo Möller, H. Atzrodt\",\"doi\":\"10.1109/iv51971.2022.9827074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges of testing and validation of automated vehicles is covering the enormous amount of possible driving situations. Efficient and reliable simulation tools are therefore required to speed up those phases. The SET Level project aims at providing an environment for simulation-based test and development of automated driving functions, focusing, as one of its main objectives, on providing an open, flexible, and extendable simulation environment, compliant to current simulation standards as Functional Mock-up Interface (FMI) and Open Simulation Interface (OSI). Within this context, the authors proposed a vehicle simulation model chain including models of motion control, actuators (with actuator management) and vehicle dynamics with two different detail levels. The models were built in Matlab/Simulink, including a developed OSI wrapper for integration into existing simulation environments. In the paper, the simulation architecture including the OSI wrapper and the single models of the chain is presented, as well as simulation results, showing the potential of the presented model chain in carrying out analyses in the field of testing automated driving functions.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle simulation model chain for virtual testing of automated driving functions and systems*
One of the major challenges of testing and validation of automated vehicles is covering the enormous amount of possible driving situations. Efficient and reliable simulation tools are therefore required to speed up those phases. The SET Level project aims at providing an environment for simulation-based test and development of automated driving functions, focusing, as one of its main objectives, on providing an open, flexible, and extendable simulation environment, compliant to current simulation standards as Functional Mock-up Interface (FMI) and Open Simulation Interface (OSI). Within this context, the authors proposed a vehicle simulation model chain including models of motion control, actuators (with actuator management) and vehicle dynamics with two different detail levels. The models were built in Matlab/Simulink, including a developed OSI wrapper for integration into existing simulation environments. In the paper, the simulation architecture including the OSI wrapper and the single models of the chain is presented, as well as simulation results, showing the potential of the presented model chain in carrying out analyses in the field of testing automated driving functions.