{"title":"求解常微分方程的神经网络","authors":"Wengyao Jiang, Chen Xuan","doi":"10.1109/CICN56167.2022.10008361","DOIUrl":null,"url":null,"abstract":"Deep learning and machine learning are immensely prevalent and highly interactive in a myriad of fields, typically neural networks is widely used in mathematics. We outline a technique for employing artificial neural networks (ANN) to solve ordinary differential equations. For better illustration, we present the basic logic and formula of ANN and gradient computation, following with one typical first order differential equation as example. In order to research the flexibility and feasibility of our model, we compare several hyperparameters and different optimizer using control variable method. Finally, our neural networks model is applied into the second order differential equations with innovative modification by analogy. In this article, we illustrate the relatively novel method to solve the ordinary differential equations and examine our model through adjustable parameters, then convert into the second order which shows a wide application range.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network for Solving Ordinary Differential Equations\",\"authors\":\"Wengyao Jiang, Chen Xuan\",\"doi\":\"10.1109/CICN56167.2022.10008361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning and machine learning are immensely prevalent and highly interactive in a myriad of fields, typically neural networks is widely used in mathematics. We outline a technique for employing artificial neural networks (ANN) to solve ordinary differential equations. For better illustration, we present the basic logic and formula of ANN and gradient computation, following with one typical first order differential equation as example. In order to research the flexibility and feasibility of our model, we compare several hyperparameters and different optimizer using control variable method. Finally, our neural networks model is applied into the second order differential equations with innovative modification by analogy. In this article, we illustrate the relatively novel method to solve the ordinary differential equations and examine our model through adjustable parameters, then convert into the second order which shows a wide application range.\",\"PeriodicalId\":287589,\"journal\":{\"name\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN56167.2022.10008361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习和机器学习在许多领域都非常普遍和高度互动,典型的神经网络被广泛应用于数学。我们概述了一种利用人工神经网络(ANN)求解常微分方程的技术。为了更好地说明,我们给出了神经网络和梯度计算的基本逻辑和公式,并以一个典型的一阶微分方程为例。为了研究模型的灵活性和可行性,我们用控制变量法比较了几种超参数和不同的优化器。最后,将神经网络模型应用于二阶微分方程,并进行了创新性的类比修正。本文给出了一种较为新颖的求解常微分方程的方法,并通过参数可调来检验我们的模型,然后将其转换为二阶,具有广泛的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network for Solving Ordinary Differential Equations
Deep learning and machine learning are immensely prevalent and highly interactive in a myriad of fields, typically neural networks is widely used in mathematics. We outline a technique for employing artificial neural networks (ANN) to solve ordinary differential equations. For better illustration, we present the basic logic and formula of ANN and gradient computation, following with one typical first order differential equation as example. In order to research the flexibility and feasibility of our model, we compare several hyperparameters and different optimizer using control variable method. Finally, our neural networks model is applied into the second order differential equations with innovative modification by analogy. In this article, we illustrate the relatively novel method to solve the ordinary differential equations and examine our model through adjustable parameters, then convert into the second order which shows a wide application range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Downhole Pressure while Tripping A Parallelized Genetic Algorithms approach to Community Energy Systems Planning Application of Artificial Neural Network to Estimate Students Performance in Scholastic Assessment Test A New Intelligent System for Evaluating and Assisting Students in Laboratory Learning Management System Performance Evaluation of Machine Learning Models on Apache Spark: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1