STAR-RIS辅助NOMA系统中的联合任务卸载与资源分配

Liang Guo, Jie Jia, Jian Chen, An Du, Xingwei Wang
{"title":"STAR-RIS辅助NOMA系统中的联合任务卸载与资源分配","authors":"Liang Guo, Jie Jia, Jian Chen, An Du, Xingwei Wang","doi":"10.1109/VTC2022-Fall57202.2022.10013059","DOIUrl":null,"url":null,"abstract":"In this paper, the joint task offloading and resource allocation are investigated for the semi-grant-free (SGF) non-orthogonal multiple access (NOMA) assisted mobile edge computing (MEC) system. Moreover, simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) are deployed to improve the quality of wireless communications under the mode switching protocol. Each MU can partially or fully offload its task to the base station (BS) based on its differentiated channel conditions and computing capacity in the proposed MEC system. We formulate the joint task offloading, channel assignment, power allocation, and the RIS coefficients design problem to save energy consumption. The formulated problem is modeled from a long-term optimization perspective as a multi-agent Markov game (MG). Then, a multi-agent deep reinforcement learning (MADRL) based joint task offloading and resource allocation (JTORA) algorithm is proposed to solve the problem. The simulation results confirm that the applied SGF-NOMA scheme can significantly reduce energy consumption under a stringent latency constraint. Moreover, the effectiveness of the STAR-RIS and the proposed algorithm are confirmed.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Task Offloading and Resource Allocation in STAR-RIS assisted NOMA System\",\"authors\":\"Liang Guo, Jie Jia, Jian Chen, An Du, Xingwei Wang\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10013059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the joint task offloading and resource allocation are investigated for the semi-grant-free (SGF) non-orthogonal multiple access (NOMA) assisted mobile edge computing (MEC) system. Moreover, simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) are deployed to improve the quality of wireless communications under the mode switching protocol. Each MU can partially or fully offload its task to the base station (BS) based on its differentiated channel conditions and computing capacity in the proposed MEC system. We formulate the joint task offloading, channel assignment, power allocation, and the RIS coefficients design problem to save energy consumption. The formulated problem is modeled from a long-term optimization perspective as a multi-agent Markov game (MG). Then, a multi-agent deep reinforcement learning (MADRL) based joint task offloading and resource allocation (JTORA) algorithm is proposed to solve the problem. The simulation results confirm that the applied SGF-NOMA scheme can significantly reduce energy consumption under a stringent latency constraint. Moreover, the effectiveness of the STAR-RIS and the proposed algorithm are confirmed.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了半免授权(SGF)非正交多址(NOMA)辅助移动边缘计算(MEC)系统的联合任务卸载和资源分配问题。此外,为了提高模式交换协议下的无线通信质量,还部署了同时发射和反射可重构智能面(STAR-RIS)。在拟议的MEC系统中,每个MU可以根据其不同的信道条件和计算能力,部分或全部地将其任务卸载给基站(BS)。我们提出了联合任务卸载、信道分配、功率分配和RIS系数设计问题,以节省能源消耗。从长期优化的角度将该问题建模为多智能体马尔可夫博弈(MG)。然后,提出了一种基于多智能体深度强化学习(MADRL)的联合任务卸载和资源分配(JTORA)算法来解决这一问题。仿真结果表明,在严格的时延约束下,所采用的SGF-NOMA方案可以显著降低能耗。最后,验证了STAR-RIS和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Task Offloading and Resource Allocation in STAR-RIS assisted NOMA System
In this paper, the joint task offloading and resource allocation are investigated for the semi-grant-free (SGF) non-orthogonal multiple access (NOMA) assisted mobile edge computing (MEC) system. Moreover, simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) are deployed to improve the quality of wireless communications under the mode switching protocol. Each MU can partially or fully offload its task to the base station (BS) based on its differentiated channel conditions and computing capacity in the proposed MEC system. We formulate the joint task offloading, channel assignment, power allocation, and the RIS coefficients design problem to save energy consumption. The formulated problem is modeled from a long-term optimization perspective as a multi-agent Markov game (MG). Then, a multi-agent deep reinforcement learning (MADRL) based joint task offloading and resource allocation (JTORA) algorithm is proposed to solve the problem. The simulation results confirm that the applied SGF-NOMA scheme can significantly reduce energy consumption under a stringent latency constraint. Moreover, the effectiveness of the STAR-RIS and the proposed algorithm are confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1