A. Demichelis, C. Divieto, L. Mortati, S. Pavarelli, M. Sassi, G. Sassi
{"title":"细胞弹性变化作为癌症检测的生物标志物:AFM计量方法","authors":"A. Demichelis, C. Divieto, L. Mortati, S. Pavarelli, M. Sassi, G. Sassi","doi":"10.1109/NANOFIM.2015.8425323","DOIUrl":null,"url":null,"abstract":"The cancer diagnosis relies on morphological examination of human cells or tissue samples: this is considered the ‘gold standard’ for the diagnosis of malignancy in any organ system. However, diagnosis based on morphological examination can be difficult, recent studies recognized the cell elasticity changes as a marker for cancer detection. A metrological characterized AFM can be used to make reproducible elasticity measurements on biological samples. In this paper a method to accurately measure a cell elasticity change based on measurement of a stable and homogeneous material is proposed. Nanoindenter characteristics (nanoindenter with pyramidal tip and triangular shape) and indentation parameters (0.1 V as approaching point, 5 um/s as indentation speed and indentation load of 0.4 V) were found feasible for all tested samples. A modal cell elastic modulus of 0.5 kPa for lung tumor cell and a limit AFM measurement reproducibility of 4% was obtained.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell elasticity change as a biomarker for cancer detection: an AFM metrological approach\",\"authors\":\"A. Demichelis, C. Divieto, L. Mortati, S. Pavarelli, M. Sassi, G. Sassi\",\"doi\":\"10.1109/NANOFIM.2015.8425323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cancer diagnosis relies on morphological examination of human cells or tissue samples: this is considered the ‘gold standard’ for the diagnosis of malignancy in any organ system. However, diagnosis based on morphological examination can be difficult, recent studies recognized the cell elasticity changes as a marker for cancer detection. A metrological characterized AFM can be used to make reproducible elasticity measurements on biological samples. In this paper a method to accurately measure a cell elasticity change based on measurement of a stable and homogeneous material is proposed. Nanoindenter characteristics (nanoindenter with pyramidal tip and triangular shape) and indentation parameters (0.1 V as approaching point, 5 um/s as indentation speed and indentation load of 0.4 V) were found feasible for all tested samples. A modal cell elastic modulus of 0.5 kPa for lung tumor cell and a limit AFM measurement reproducibility of 4% was obtained.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell elasticity change as a biomarker for cancer detection: an AFM metrological approach
The cancer diagnosis relies on morphological examination of human cells or tissue samples: this is considered the ‘gold standard’ for the diagnosis of malignancy in any organ system. However, diagnosis based on morphological examination can be difficult, recent studies recognized the cell elasticity changes as a marker for cancer detection. A metrological characterized AFM can be used to make reproducible elasticity measurements on biological samples. In this paper a method to accurately measure a cell elasticity change based on measurement of a stable and homogeneous material is proposed. Nanoindenter characteristics (nanoindenter with pyramidal tip and triangular shape) and indentation parameters (0.1 V as approaching point, 5 um/s as indentation speed and indentation load of 0.4 V) were found feasible for all tested samples. A modal cell elastic modulus of 0.5 kPa for lung tumor cell and a limit AFM measurement reproducibility of 4% was obtained.