参数源模型熵编码及其在图像和视频数据快速高效压缩中的应用

K. Minoo, Truong Q. Nguyen
{"title":"参数源模型熵编码及其在图像和视频数据快速高效压缩中的应用","authors":"K. Minoo, Truong Q. Nguyen","doi":"10.1109/DCC.2009.80","DOIUrl":null,"url":null,"abstract":"In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Entropy Coding via Parametric Source Model with Applications in Fast and Efficient Compression of Image and Video Data\",\"authors\":\"K. Minoo, Truong Q. Nguyen\",\"doi\":\"10.1109/DCC.2009.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种用参数分布模型表示的数据的有效熵编码框架。基于所提出的框架,熵编码器通过最大后验A (MAP)或最大似然(ML)参数估计技术估计统计模型的参数(用于编码数据)来实现编码效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy Coding via Parametric Source Model with Applications in Fast and Efficient Compression of Image and Video Data
In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via Maximum A Posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1