具有附加不确定性系统的矩基模型预测控制

M. B. Saltik, Leyla Özkan, S. Weiland, J. Ludlage
{"title":"具有附加不确定性系统的矩基模型预测控制","authors":"M. B. Saltik, Leyla Özkan, S. Weiland, J. Ludlage","doi":"10.23919/ACC.2017.7963419","DOIUrl":null,"url":null,"abstract":"In this paper, we present a model predictive control (MPC) strategy based on the moments of the state variables and the cost functional. The statistical properties of the state predictions are calculated through the open loop iteration of dynamics and used in the formulation of MPC cost function. We show that the moment based formulation yields predictive control problems which are computationally simpler to solve compared to the existing robust MPC formulations, while providing statistical robustness properties. We apply the proposed MPC technique to a simple simulation example to demonstrate its effectiveness.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moment based model predictive control for systems with additive uncertainty\",\"authors\":\"M. B. Saltik, Leyla Özkan, S. Weiland, J. Ludlage\",\"doi\":\"10.23919/ACC.2017.7963419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a model predictive control (MPC) strategy based on the moments of the state variables and the cost functional. The statistical properties of the state predictions are calculated through the open loop iteration of dynamics and used in the formulation of MPC cost function. We show that the moment based formulation yields predictive control problems which are computationally simpler to solve compared to the existing robust MPC formulations, while providing statistical robustness properties. We apply the proposed MPC technique to a simple simulation example to demonstrate its effectiveness.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于状态变量矩和代价函数的模型预测控制策略。通过动力学的开环迭代计算状态预测的统计性质,并将其用于MPC代价函数的计算。我们表明,与现有的鲁棒MPC公式相比,基于矩的公式产生的预测控制问题在计算上更容易解决,同时提供了统计鲁棒性。我们将所提出的MPC技术应用于一个简单的仿真实例,以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moment based model predictive control for systems with additive uncertainty
In this paper, we present a model predictive control (MPC) strategy based on the moments of the state variables and the cost functional. The statistical properties of the state predictions are calculated through the open loop iteration of dynamics and used in the formulation of MPC cost function. We show that the moment based formulation yields predictive control problems which are computationally simpler to solve compared to the existing robust MPC formulations, while providing statistical robustness properties. We apply the proposed MPC technique to a simple simulation example to demonstrate its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1