一种鲁棒脉冲触发器及其在增强扫描设计中的应用

R. Kumar, Kalyana C. Bollapalli, Rajesh Garg, Tarun Soni, S. Khatri
{"title":"一种鲁棒脉冲触发器及其在增强扫描设计中的应用","authors":"R. Kumar, Kalyana C. Bollapalli, Rajesh Garg, Tarun Soni, S. Khatri","doi":"10.1109/ICCD.2009.5413168","DOIUrl":null,"url":null,"abstract":"Delay faults are frequently encountered in nanometer technologies. Therefore, it is critical to detect these faults during factory test. Testing for a delay fault requires the application of a pair of test vectors in an at-speed manner. To maximize the delay fault detection capability, it is desired that the vectors in this pair are independent. Independent vector pairs cannot always be applied to a circuit implemented with standard scan design approaches. However, this can be achieved by using enhanced scan flip-flops, which store two bits of data. This paper has two contributions. First, we develop a pulsed flip-flop (PFF) design. Second, we present an enhanced scan flipflop design, based on our PFF circuit. We have compared the performance of our pulse based flip-flop with recently published pulse based flip-flop designs, as well as a traditional master-slave D flip-flop. Our PFF shows significant improvements in power and timing compared to the other designs. Our pulse based enhanced scan flip-flop (PESFF) has 13% lower power dissipation and 26% better timing than a conventional D flipflop based enhanced scan flip-flop (DESFF). The layout area of our PESFF is 5.2% smaller than the DESFF. Monte Carlo simulations demonstrate that our design is more robust to process variations than the DESFF.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A robust pulsed flip-flop and its use in enhanced scan design\",\"authors\":\"R. Kumar, Kalyana C. Bollapalli, Rajesh Garg, Tarun Soni, S. Khatri\",\"doi\":\"10.1109/ICCD.2009.5413168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delay faults are frequently encountered in nanometer technologies. Therefore, it is critical to detect these faults during factory test. Testing for a delay fault requires the application of a pair of test vectors in an at-speed manner. To maximize the delay fault detection capability, it is desired that the vectors in this pair are independent. Independent vector pairs cannot always be applied to a circuit implemented with standard scan design approaches. However, this can be achieved by using enhanced scan flip-flops, which store two bits of data. This paper has two contributions. First, we develop a pulsed flip-flop (PFF) design. Second, we present an enhanced scan flipflop design, based on our PFF circuit. We have compared the performance of our pulse based flip-flop with recently published pulse based flip-flop designs, as well as a traditional master-slave D flip-flop. Our PFF shows significant improvements in power and timing compared to the other designs. Our pulse based enhanced scan flip-flop (PESFF) has 13% lower power dissipation and 26% better timing than a conventional D flipflop based enhanced scan flip-flop (DESFF). The layout area of our PESFF is 5.2% smaller than the DESFF. Monte Carlo simulations demonstrate that our design is more robust to process variations than the DESFF.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

延迟故障是纳米技术中经常遇到的问题。因此,在工厂测试中检测这些故障是至关重要的。延迟故障的测试需要以高速的方式应用一对测试向量。为了使延迟故障检测能力最大化,要求这对向量是独立的。独立向量对并不总是适用于用标准扫描设计方法实现的电路。然而,这可以通过使用增强扫描触发器来实现,它可以存储两位数据。这篇论文有两个贡献。首先,我们开发了一个脉冲触发器(PFF)设计。其次,我们提出了一个增强扫描触发器设计,基于我们的PFF电路。我们将我们的脉冲触发器与最近发表的脉冲触发器设计以及传统的主从D触发器的性能进行了比较。与其他设计相比,我们的PFF在功率和时序方面有显着改进。我们基于脉冲的增强扫描触发器(PESFF)比传统的基于D触发器的增强扫描触发器(DESFF)功耗低13%,时序好26%。我们的PESFF的布局面积比DESFF小5.2%。蒙特卡罗模拟表明,我们的设计比DESFF对过程变化的鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust pulsed flip-flop and its use in enhanced scan design
Delay faults are frequently encountered in nanometer technologies. Therefore, it is critical to detect these faults during factory test. Testing for a delay fault requires the application of a pair of test vectors in an at-speed manner. To maximize the delay fault detection capability, it is desired that the vectors in this pair are independent. Independent vector pairs cannot always be applied to a circuit implemented with standard scan design approaches. However, this can be achieved by using enhanced scan flip-flops, which store two bits of data. This paper has two contributions. First, we develop a pulsed flip-flop (PFF) design. Second, we present an enhanced scan flipflop design, based on our PFF circuit. We have compared the performance of our pulse based flip-flop with recently published pulse based flip-flop designs, as well as a traditional master-slave D flip-flop. Our PFF shows significant improvements in power and timing compared to the other designs. Our pulse based enhanced scan flip-flop (PESFF) has 13% lower power dissipation and 26% better timing than a conventional D flipflop based enhanced scan flip-flop (DESFF). The layout area of our PESFF is 5.2% smaller than the DESFF. Monte Carlo simulations demonstrate that our design is more robust to process variations than the DESFF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1