{"title":"基于神经网络的p2p借贷市场决策模型","authors":"Golnoosh Babaei, Shahrooz Bamdad","doi":"10.1002/isaf.1480","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study proposes an investment recommendation model for peer-to-peer (P2P) lending. P2P lenders usually are inexpert, so helping them to make the best decision for their investments is vital. In this study, while we aim to compare the performance of different artificial neural network (ANN) models, we evaluate loans from two perspectives: risk and return. The net present value (NPV) is considered as the return variable. To the best of our knowledge, NPV has been used in few studies in the P2P lending context. Considering the advantages of using NPV, we aim to improve decision-making models in this market by the use of NPV and the integration of supervised learning and optimization algorithms that can be considered as one of our contributions. In order to predict NPV, three ANN models are compared concerning mean square error, mean absolute error, and root-mean-square error to find the optimal ANN model. Furthermore, for the risk evaluation, the probability of default of loans is computed using logistic regression. Investors in the P2P lending market can share their assets between different loans, so the procedure of P2P investment is similar to portfolio optimization. In this context, we minimize the risk of a portfolio for a minimum acceptable level of return. To analyse the effectiveness of our proposed model, we compare our decision-making algorithm with the output of a traditional model. The experimental results on a real-world data set show that our model leads to a better investment concerning both risk and return.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 3","pages":"142-150"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1480","citationCount":"12","resultStr":"{\"title\":\"A neural-network-based decision-making model in the peer-to-peer lending market\",\"authors\":\"Golnoosh Babaei, Shahrooz Bamdad\",\"doi\":\"10.1002/isaf.1480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study proposes an investment recommendation model for peer-to-peer (P2P) lending. P2P lenders usually are inexpert, so helping them to make the best decision for their investments is vital. In this study, while we aim to compare the performance of different artificial neural network (ANN) models, we evaluate loans from two perspectives: risk and return. The net present value (NPV) is considered as the return variable. To the best of our knowledge, NPV has been used in few studies in the P2P lending context. Considering the advantages of using NPV, we aim to improve decision-making models in this market by the use of NPV and the integration of supervised learning and optimization algorithms that can be considered as one of our contributions. In order to predict NPV, three ANN models are compared concerning mean square error, mean absolute error, and root-mean-square error to find the optimal ANN model. Furthermore, for the risk evaluation, the probability of default of loans is computed using logistic regression. Investors in the P2P lending market can share their assets between different loans, so the procedure of P2P investment is similar to portfolio optimization. In this context, we minimize the risk of a portfolio for a minimum acceptable level of return. To analyse the effectiveness of our proposed model, we compare our decision-making algorithm with the output of a traditional model. The experimental results on a real-world data set show that our model leads to a better investment concerning both risk and return.</p>\\n </div>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"27 3\",\"pages\":\"142-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1480\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
A neural-network-based decision-making model in the peer-to-peer lending market
This study proposes an investment recommendation model for peer-to-peer (P2P) lending. P2P lenders usually are inexpert, so helping them to make the best decision for their investments is vital. In this study, while we aim to compare the performance of different artificial neural network (ANN) models, we evaluate loans from two perspectives: risk and return. The net present value (NPV) is considered as the return variable. To the best of our knowledge, NPV has been used in few studies in the P2P lending context. Considering the advantages of using NPV, we aim to improve decision-making models in this market by the use of NPV and the integration of supervised learning and optimization algorithms that can be considered as one of our contributions. In order to predict NPV, three ANN models are compared concerning mean square error, mean absolute error, and root-mean-square error to find the optimal ANN model. Furthermore, for the risk evaluation, the probability of default of loans is computed using logistic regression. Investors in the P2P lending market can share their assets between different loans, so the procedure of P2P investment is similar to portfolio optimization. In this context, we minimize the risk of a portfolio for a minimum acceptable level of return. To analyse the effectiveness of our proposed model, we compare our decision-making algorithm with the output of a traditional model. The experimental results on a real-world data set show that our model leads to a better investment concerning both risk and return.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.